Research of Hood on Maintaining Performance Balance Between Dent Resistance and Pedestrian Head Protection

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Huixia Zhang, Yongwei Shi, Lian Lu, Ligang Gou, Lei Wang, Jun Zhang
{"title":"Research of Hood on Maintaining Performance Balance Between Dent Resistance and Pedestrian Head Protection","authors":"Huixia Zhang, Yongwei Shi, Lian Lu, Ligang Gou, Lei Wang, Jun Zhang","doi":"10.1007/s12239-024-00081-z","DOIUrl":null,"url":null,"abstract":"<p>In the developmental phase of passenger automobile hoods, it is crucial to take dent resistance and pedestrian head protection performances into account. And maintaining a performance balance between the two aspects has proven challenging. With few studies on how to effectively maintain the balance, in this paper, a certain passenger car hood was used as a basic model to investigate structural improvement directions that benefit both performances, by modifying several key variables of the honeycomb shaped inner panel one at a time and then outputting results of hood dent resistance and headform impact through Abaqus and LS-DYNA, respectively. The results indicated that raising the honeycomb inner panel structure at positions with poor stiffness contributes to improvements in dent resistance and pedestrian head protection performance, reflecting in a maximum stiffness increase of 50% and a reduction of 2.98% in the average value of HIC<sub>15</sub> change rate. And other alternative improvement options, as well as their effects on dent resistance and pedestrian head protection performance, were provided, providing insights for optimizing the structure of vehicle hood inner panels.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"26 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00081-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the developmental phase of passenger automobile hoods, it is crucial to take dent resistance and pedestrian head protection performances into account. And maintaining a performance balance between the two aspects has proven challenging. With few studies on how to effectively maintain the balance, in this paper, a certain passenger car hood was used as a basic model to investigate structural improvement directions that benefit both performances, by modifying several key variables of the honeycomb shaped inner panel one at a time and then outputting results of hood dent resistance and headform impact through Abaqus and LS-DYNA, respectively. The results indicated that raising the honeycomb inner panel structure at positions with poor stiffness contributes to improvements in dent resistance and pedestrian head protection performance, reflecting in a maximum stiffness increase of 50% and a reduction of 2.98% in the average value of HIC15 change rate. And other alternative improvement options, as well as their effects on dent resistance and pedestrian head protection performance, were provided, providing insights for optimizing the structure of vehicle hood inner panels.

Abstract Image

研究油烟机如何在防凹痕和行人头部保护之间保持性能平衡
在乘用车发动机罩的开发阶段,考虑抗凹痕性能和行人头部保护性能至关重要。事实证明,在这两方面之间保持性能平衡具有挑战性。本文以某款乘用车发动机罩为基本模型,通过逐一修改蜂窝状内板的几个关键变量,然后分别通过 Abaqus 和 LS-DYNA 输出发动机罩抗凹陷性能和头部冲击性能的结果,来研究对这两个性能都有利的结构改进方向。结果表明,在刚度较差的位置提高蜂窝状内板结构有助于改善抗凹痕性能和行人头部保护性能,体现在刚度最大提高了 50%,HIC15 变化率平均值降低了 2.98%。此外,还提供了其他可供选择的改进方案及其对抗凹痕性能和行人头部保护性能的影响,为优化汽车引擎盖内板结构提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信