Huixia Zhang, Yongwei Shi, Lian Lu, Ligang Gou, Lei Wang, Jun Zhang
{"title":"Research of Hood on Maintaining Performance Balance Between Dent Resistance and Pedestrian Head Protection","authors":"Huixia Zhang, Yongwei Shi, Lian Lu, Ligang Gou, Lei Wang, Jun Zhang","doi":"10.1007/s12239-024-00081-z","DOIUrl":null,"url":null,"abstract":"<p>In the developmental phase of passenger automobile hoods, it is crucial to take dent resistance and pedestrian head protection performances into account. And maintaining a performance balance between the two aspects has proven challenging. With few studies on how to effectively maintain the balance, in this paper, a certain passenger car hood was used as a basic model to investigate structural improvement directions that benefit both performances, by modifying several key variables of the honeycomb shaped inner panel one at a time and then outputting results of hood dent resistance and headform impact through Abaqus and LS-DYNA, respectively. The results indicated that raising the honeycomb inner panel structure at positions with poor stiffness contributes to improvements in dent resistance and pedestrian head protection performance, reflecting in a maximum stiffness increase of 50% and a reduction of 2.98% in the average value of HIC<sub>15</sub> change rate. And other alternative improvement options, as well as their effects on dent resistance and pedestrian head protection performance, were provided, providing insights for optimizing the structure of vehicle hood inner panels.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"26 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00081-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the developmental phase of passenger automobile hoods, it is crucial to take dent resistance and pedestrian head protection performances into account. And maintaining a performance balance between the two aspects has proven challenging. With few studies on how to effectively maintain the balance, in this paper, a certain passenger car hood was used as a basic model to investigate structural improvement directions that benefit both performances, by modifying several key variables of the honeycomb shaped inner panel one at a time and then outputting results of hood dent resistance and headform impact through Abaqus and LS-DYNA, respectively. The results indicated that raising the honeycomb inner panel structure at positions with poor stiffness contributes to improvements in dent resistance and pedestrian head protection performance, reflecting in a maximum stiffness increase of 50% and a reduction of 2.98% in the average value of HIC15 change rate. And other alternative improvement options, as well as their effects on dent resistance and pedestrian head protection performance, were provided, providing insights for optimizing the structure of vehicle hood inner panels.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.