{"title":"Design and investigation of a novel variable reactance-based capacitive RF-MEMS switch with multifrequency operation for mmWave applications","authors":"Raj Kumari, Mahesh Angira","doi":"10.1007/s10470-024-02271-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the design and investigation of a variable reactance-based RF-MEMS capacitive switch operating on multiple frequency bands in millimetre wave ranges used for B5G applications. The proposed switch has a built-in band switching capability to cover multiple frequency bands in FR-II mmWave band which can provide an inspirational and optimistic platform to tackle 5G and beyond challenges. The novel design utilizes lateral deflections to make and break the device’s connection and results in a very low pull-in voltage of < 3 V. The switch operates in different modes maximum up to 9 and switches between multiple frequencies by varying the reactance of the electromechanical structure. These modes are tuned to cover all the bands from n257 to n261, primarily used to provide 5G/B5G services in various countries. The RF performance, voltage requirement, and switching speed of the proposed device are as per the guidelines of the 5G/B5G communication system. The insertion losses are < 0.5 dB, and isolation is > 20 dB over the tuned frequency range (FR-II mmWave) with optimum isolation peaks at 12.1 GHz, 12.9 GHz, 21.2 GHz, 22.2 GHz, 23.5 GHz, 24.8 GHz, 26.1 GHz, and 39.5 GHz. The proposed device features a significant improvement in electromechanical and electromagnetic performance over a wide bandwidth with different structural configurations and thus can be used as an efficient IoT (Internet of Things) frequency reconfigurable device.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"119 3","pages":"417 - 430"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-024-02271-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design and investigation of a variable reactance-based RF-MEMS capacitive switch operating on multiple frequency bands in millimetre wave ranges used for B5G applications. The proposed switch has a built-in band switching capability to cover multiple frequency bands in FR-II mmWave band which can provide an inspirational and optimistic platform to tackle 5G and beyond challenges. The novel design utilizes lateral deflections to make and break the device’s connection and results in a very low pull-in voltage of < 3 V. The switch operates in different modes maximum up to 9 and switches between multiple frequencies by varying the reactance of the electromechanical structure. These modes are tuned to cover all the bands from n257 to n261, primarily used to provide 5G/B5G services in various countries. The RF performance, voltage requirement, and switching speed of the proposed device are as per the guidelines of the 5G/B5G communication system. The insertion losses are < 0.5 dB, and isolation is > 20 dB over the tuned frequency range (FR-II mmWave) with optimum isolation peaks at 12.1 GHz, 12.9 GHz, 21.2 GHz, 22.2 GHz, 23.5 GHz, 24.8 GHz, 26.1 GHz, and 39.5 GHz. The proposed device features a significant improvement in electromechanical and electromagnetic performance over a wide bandwidth with different structural configurations and thus can be used as an efficient IoT (Internet of Things) frequency reconfigurable device.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.