Similarity of : Operators and the Hyperinvariant Subspace Problem

IF 1.3 4区 数学 Q1 MATHEMATICS
Abdelkader Segres, Ahmed Bachir, Sid Ahmed Ould Ahmed Mahmoud
{"title":"Similarity of : Operators and the Hyperinvariant Subspace Problem","authors":"Abdelkader Segres, Ahmed Bachir, Sid Ahmed Ould Ahmed Mahmoud","doi":"10.1155/2024/9943902","DOIUrl":null,"url":null,"abstract":"In the present paper, we first show that the existence of the solutions of the operator equation <span><svg height=\"10.3089pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 40.024 10.3089\" width=\"40.024pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.136,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.215,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,20.678,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.393,0)\"></path></g></svg><span></span><svg height=\"10.3089pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"43.6061838 -10.1025 10.133 10.3089\" width=\"10.133pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.656,0)\"></path></g></svg></span> is related to the similarity of operators of class <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 15.8622 11.927\" width=\"15.8622pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-68\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,13.051,3.132)\"></path></g></svg>,</span> and then we give a sufficient condition for the existence of nontrivial hyperinvariant subspaces. These subspaces are the closure of <svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 42.6255 12.7178\" width=\"42.6255pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.823,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.413,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,17.59,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,25.157,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,29.655,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,37.94,0)\"></path></g></svg> for some singular inner functions <span><svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.69399 9.39034\" width=\"7.69399pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-253\"></use></g></svg>.</span> As an application, we prove that every <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 18.1457 11.927\" width=\"18.1457pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-68\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,13.051,3.132)\"></path></g></svg>-</span>quasinormal operator and <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 18.1457 11.927\" width=\"18.1457pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-68\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.619,3.132)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,13.051,3.132)\"><use xlink:href=\"#g50-49\"></use></g></svg>-</span>centered operator, under suitable conditions, have nontrivial hyperinvariant subspaces.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"17 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9943902","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we first show that the existence of the solutions of the operator equation is related to the similarity of operators of class , and then we give a sufficient condition for the existence of nontrivial hyperinvariant subspaces. These subspaces are the closure of for some singular inner functions . As an application, we prove that every -quasinormal operator and -centered operator, under suitable conditions, have nontrivial hyperinvariant subspaces.
.算子的相似性算子与超不变子空间问题
在本文中,我们首先证明了算子方程的解的存在性与类算子的相似性有关,然后给出了非无量超不变子空间存在的充分条件。这些子空间是一些奇异内函数的闭包。作为应用,我们证明在合适的条件下,每个-类正常算子和-中心算子都有非难超不变子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信