{"title":"One-Spike SNN: Single-Spike Phase Coding With Base Manipulation for ANN-to-SNN Conversion Loss Minimization","authors":"Sangwoo Hwang;Jaeha Kung","doi":"10.1109/TETC.2024.3386893","DOIUrl":null,"url":null,"abstract":"As spiking neural networks (SNNs) are event-driven, energy efficiency is higher than conventional artificial neural networks (ANNs). Since SNN delivers data through discrete spikes, it is difficult to use gradient methods for training, limiting its accuracy. To keep the accuracy of SNNs similar to ANN counterparts, pre-trained ANNs are converted to SNNs (ANN-to-SNN conversion). During the conversion, encoding activations of ANNs to a set of spikes in SNNs is crucial for minimizing the conversion loss. In this work, we propose a single-spike phase coding as an encoding scheme that minimizes the number of spikes to transfer data between SNN layers. To minimize the encoding error due to single-spike approximation in phase coding, threshold shift and base manipulation are proposed. Without any additional retraining or architectural constraints on ANNs, the proposed conversion method does not lose inference accuracy (0.58% on average) verified on three convolutional neural networks (CNNs) with CIFAR and ImageNet datasets. In addition, graph convolutional networks (GCNs) are converted to SNNs successfully with an average accuracy loss of 0.90%. Most importantly, the energy efficiency of our SNN improves by 4.6<inline-formula><tex-math>$\\sim\\!\\! 17.3\\times$</tex-math></inline-formula> compared to the ANN baseline.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"13 1","pages":"162-172"},"PeriodicalIF":5.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10502282/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As spiking neural networks (SNNs) are event-driven, energy efficiency is higher than conventional artificial neural networks (ANNs). Since SNN delivers data through discrete spikes, it is difficult to use gradient methods for training, limiting its accuracy. To keep the accuracy of SNNs similar to ANN counterparts, pre-trained ANNs are converted to SNNs (ANN-to-SNN conversion). During the conversion, encoding activations of ANNs to a set of spikes in SNNs is crucial for minimizing the conversion loss. In this work, we propose a single-spike phase coding as an encoding scheme that minimizes the number of spikes to transfer data between SNN layers. To minimize the encoding error due to single-spike approximation in phase coding, threshold shift and base manipulation are proposed. Without any additional retraining or architectural constraints on ANNs, the proposed conversion method does not lose inference accuracy (0.58% on average) verified on three convolutional neural networks (CNNs) with CIFAR and ImageNet datasets. In addition, graph convolutional networks (GCNs) are converted to SNNs successfully with an average accuracy loss of 0.90%. Most importantly, the energy efficiency of our SNN improves by 4.6$\sim\!\! 17.3\times$ compared to the ANN baseline.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.