A Bio-Inspired Implementation of a Sparse-Learning Spike-Based Hippocampus Memory Model

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Daniel Casanueva-Morato;Alvaro Ayuso-Martinez;Juan P. Dominguez-Morales;Angel Jimenez-Fernandez;Gabriel Jimenez-Moreno
{"title":"A Bio-Inspired Implementation of a Sparse-Learning Spike-Based Hippocampus Memory Model","authors":"Daniel Casanueva-Morato;Alvaro Ayuso-Martinez;Juan P. Dominguez-Morales;Angel Jimenez-Fernandez;Gabriel Jimenez-Moreno","doi":"10.1109/TETC.2024.3387026","DOIUrl":null,"url":null,"abstract":"The brain is capable of solving complex problems simply and efficiently, far surpassing modern computers. In this regard, neuromorphic engineering focuses on mimicking the basic principles that govern the brain in order to develop systems that achieve such computational capabilities. Within this field, bio-inspired learning and memory systems are still a challenge to be solved, and this is where the hippocampus is involved. It is the region of the brain that acts as a short-term memory, allowing the learning and storage of information from all the sensory nuclei of the cerebral cortex and its subsequent recall. In this work, we propose a novel bio-inspired hippocampal memory model with the ability to learn memories, recall them from a fragment of itself (cue) and even forget memories when trying to learn others with the same cue. This model has been implemented on SpiNNaker using Spiking Neural Networks, and a set of experiments were performed to demonstrate its correct operation. This work presents the first simulation implemented on a special-purpose hardware platform for Spiking Neural Networks of a fully functional bio-inspired spike-based hippocampus memory model, paving the road for the development of future more complex neuromorphic systems.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"13 1","pages":"119-133"},"PeriodicalIF":5.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10502330","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10502330/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The brain is capable of solving complex problems simply and efficiently, far surpassing modern computers. In this regard, neuromorphic engineering focuses on mimicking the basic principles that govern the brain in order to develop systems that achieve such computational capabilities. Within this field, bio-inspired learning and memory systems are still a challenge to be solved, and this is where the hippocampus is involved. It is the region of the brain that acts as a short-term memory, allowing the learning and storage of information from all the sensory nuclei of the cerebral cortex and its subsequent recall. In this work, we propose a novel bio-inspired hippocampal memory model with the ability to learn memories, recall them from a fragment of itself (cue) and even forget memories when trying to learn others with the same cue. This model has been implemented on SpiNNaker using Spiking Neural Networks, and a set of experiments were performed to demonstrate its correct operation. This work presents the first simulation implemented on a special-purpose hardware platform for Spiking Neural Networks of a fully functional bio-inspired spike-based hippocampus memory model, paving the road for the development of future more complex neuromorphic systems.
基于稀疏学习尖峰的海马记忆模型的生物启发实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信