{"title":"The R2R3-MYB transcription factor ZeMYB32 negatively regulates anthocyanin biosynthesis in Zinnia elegans","authors":"Lingli Jiang, Jiahong Chen, Jieyu Qian, Menghan Xu, Hongsheng Qing, Hefeng Cheng, Jianxin Fu, Chao Zhang","doi":"10.1007/s11103-024-01441-0","DOIUrl":null,"url":null,"abstract":"<p>Anthocyanins are one of the important color-presenting substances in <i>Zinnia elegans</i>. In this study, an R2R3-MYB transcriptional factor ZeMYB32 was functionally characterized. Bioinformatic analysis indicated that ZeMYB32 belonged to the subgroup 4 and contained EAR repressor motif. The subcellular localization results showed that ZeMYB32 was localized on the nucleus. Stable transformation of <i>ZeMYB32</i> in tobacco confirmed that ZeMYB32 significantly reduced the pigmentation of transgenic tobacco flowers and altered the flower phenotype, along with a decrease in the expression of several structural genes for anthocyanin synthesis. Yeast two-hybrid confirmed that ZeMYB32 could interact with ZeGL3, a key anthocyanin synthesis regulator from IIIf subgroup bHLH transcription factor. Moreover, transient transformation of tobacco leaves confirmed that the promoting effect of ZeMYB9 and ZeGL3 on anthocyanin synthesis was weakened by ZeMYB32, revealing that ZeMYB32 could compete with ZeMYB9 for binding to ZeGL3. Taken together, our results reveal that ZeMYB32 acts as a negative regulator of anthocyanin biosynthesis in <i>Z. elegans</i>.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01441-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anthocyanins are one of the important color-presenting substances in Zinnia elegans. In this study, an R2R3-MYB transcriptional factor ZeMYB32 was functionally characterized. Bioinformatic analysis indicated that ZeMYB32 belonged to the subgroup 4 and contained EAR repressor motif. The subcellular localization results showed that ZeMYB32 was localized on the nucleus. Stable transformation of ZeMYB32 in tobacco confirmed that ZeMYB32 significantly reduced the pigmentation of transgenic tobacco flowers and altered the flower phenotype, along with a decrease in the expression of several structural genes for anthocyanin synthesis. Yeast two-hybrid confirmed that ZeMYB32 could interact with ZeGL3, a key anthocyanin synthesis regulator from IIIf subgroup bHLH transcription factor. Moreover, transient transformation of tobacco leaves confirmed that the promoting effect of ZeMYB9 and ZeGL3 on anthocyanin synthesis was weakened by ZeMYB32, revealing that ZeMYB32 could compete with ZeMYB9 for binding to ZeGL3. Taken together, our results reveal that ZeMYB32 acts as a negative regulator of anthocyanin biosynthesis in Z. elegans.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.