Jan Derk Groeneveld, Suman Pokhrel and Lutz Mädler
{"title":"Flame emission spectroscopy of single droplet micro explosions†","authors":"Jan Derk Groeneveld, Suman Pokhrel and Lutz Mädler","doi":"10.1039/D3NH00558E","DOIUrl":null,"url":null,"abstract":"<p >Nanoparticles exhibit superior physical and chemical properties, making them highly desirable for various applications. Flame spray pyrolysis (FSP) is a versatile technique for synthesizing size and composition-controlled metal oxide/sulfide nanoparticles through a gas-phase reaction. To understand the fundamental mechanisms governing nanoparticle formation in FSP, simplified single-droplet experiments have proven to unravel the physicochemical mechanisms of liquid metal precursor combustions. This work introduces a novel method using flame emission spectroscopy and high-speed imaging to analyze combustion species and metal release during metalorganic single droplet combustions, with the example of the 2-ethylhexanoci acid (EHA)–tetrahydrothiophene (THT)–mesitylcopper (MiCu) precursor system. The method enables the tracing of precursor components released from droplet into the flame by spatial and temporal resolved emission tracking from combustion species (OH*, CH*, C<small><sub>2</sub></small>*, CS*, CS<small><sub>2</sub></small>*) and atomic spectral lines (Cu I). The tracking of metal emission enables the direct observation of the particle formation route, offering novel insights into the metalorganic precursor combustions. The findings of this work show a direct correlation between micro-explosions and nanoparticle formation through the gas-to-particle route. The release of copper emissions is observed with the micro-explosion event, marking the micro-explosions as the critical mechanism for the metal release and subsequent nanoparticle formation during the combustion process. The results indicate a metalorganic viscous shell formation (THT + MiCu) leading to the micro explosion. The EHA/THT ratio significantly affects the combustion behavior. Lower ratios lead to a gradual copper release before the micro explosion; higher ratios shorten the copper release and delay the micro explosion – the highest ratio results in two distinct burning stages.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 6","pages":" 956-967"},"PeriodicalIF":8.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/nh/d3nh00558e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nh/d3nh00558e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles exhibit superior physical and chemical properties, making them highly desirable for various applications. Flame spray pyrolysis (FSP) is a versatile technique for synthesizing size and composition-controlled metal oxide/sulfide nanoparticles through a gas-phase reaction. To understand the fundamental mechanisms governing nanoparticle formation in FSP, simplified single-droplet experiments have proven to unravel the physicochemical mechanisms of liquid metal precursor combustions. This work introduces a novel method using flame emission spectroscopy and high-speed imaging to analyze combustion species and metal release during metalorganic single droplet combustions, with the example of the 2-ethylhexanoci acid (EHA)–tetrahydrothiophene (THT)–mesitylcopper (MiCu) precursor system. The method enables the tracing of precursor components released from droplet into the flame by spatial and temporal resolved emission tracking from combustion species (OH*, CH*, C2*, CS*, CS2*) and atomic spectral lines (Cu I). The tracking of metal emission enables the direct observation of the particle formation route, offering novel insights into the metalorganic precursor combustions. The findings of this work show a direct correlation between micro-explosions and nanoparticle formation through the gas-to-particle route. The release of copper emissions is observed with the micro-explosion event, marking the micro-explosions as the critical mechanism for the metal release and subsequent nanoparticle formation during the combustion process. The results indicate a metalorganic viscous shell formation (THT + MiCu) leading to the micro explosion. The EHA/THT ratio significantly affects the combustion behavior. Lower ratios lead to a gradual copper release before the micro explosion; higher ratios shorten the copper release and delay the micro explosion – the highest ratio results in two distinct burning stages.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.