{"title":"Decoding Functional Brain Data for Emotion Recognition: A Machine Learning Approach","authors":"Emine Elif Tülay, Tuğçe Ballı","doi":"10.1145/3657638","DOIUrl":null,"url":null,"abstract":"<p>The identification of emotions is an open research area and has a potential leading role in the improvement of socio-emotional skills such as empathy, sensitivity, and emotion recognition in humans. The current study aimed to use Event Related Potential (ERP) components (N100, N200, P200, P300, early Late Positive Potential (LPP), middle LPP, and late LPP) of EEG data for the classification of emotional states (positive, negative, neutral). EEG data were collected from 62 healthy individuals over 18 electrodes. An emotional paradigm with pictures from the International Affective Picture System (IAPS) was used to record the EEG data. A linear Support Vector Machine (C=0.1) was used to classify emotions, and a forward feature selection approach was used to eliminate irrelevant features. The early LPP component, which was the most discriminative among all ERP components, had the highest classification accuracy (70.16%) for identifying negative and neutral stimuli. The classification of negative versus neutral stimuli had the best accuracy (79.84%) when all ERP components were used as a combined feature set, followed by positive versus negative stimuli (75.00%) and positive versus neutral stimuli (68.55%). Overall, the combined ERP component feature sets outperformed single ERP component feature sets for all stimulus pairings in terms of accuracy. These findings are promising for further research and development of EEG-based emotion recognition systems.</p>","PeriodicalId":50921,"journal":{"name":"ACM Transactions on Applied Perception","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Applied Perception","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3657638","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of emotions is an open research area and has a potential leading role in the improvement of socio-emotional skills such as empathy, sensitivity, and emotion recognition in humans. The current study aimed to use Event Related Potential (ERP) components (N100, N200, P200, P300, early Late Positive Potential (LPP), middle LPP, and late LPP) of EEG data for the classification of emotional states (positive, negative, neutral). EEG data were collected from 62 healthy individuals over 18 electrodes. An emotional paradigm with pictures from the International Affective Picture System (IAPS) was used to record the EEG data. A linear Support Vector Machine (C=0.1) was used to classify emotions, and a forward feature selection approach was used to eliminate irrelevant features. The early LPP component, which was the most discriminative among all ERP components, had the highest classification accuracy (70.16%) for identifying negative and neutral stimuli. The classification of negative versus neutral stimuli had the best accuracy (79.84%) when all ERP components were used as a combined feature set, followed by positive versus negative stimuli (75.00%) and positive versus neutral stimuli (68.55%). Overall, the combined ERP component feature sets outperformed single ERP component feature sets for all stimulus pairings in terms of accuracy. These findings are promising for further research and development of EEG-based emotion recognition systems.
期刊介绍:
ACM Transactions on Applied Perception (TAP) aims to strengthen the synergy between computer science and psychology/perception by publishing top quality papers that help to unify research in these fields.
The journal publishes inter-disciplinary research of significant and lasting value in any topic area that spans both Computer Science and Perceptual Psychology. All papers must incorporate both perceptual and computer science components.