Pablo Krupa;Rim Jaouani;Daniel Limon;Teodoro Alamo
{"title":"A Sparse ADMM-Based Solver for Linear MPC Subject to Terminal Quadratic Constraint","authors":"Pablo Krupa;Rim Jaouani;Daniel Limon;Teodoro Alamo","doi":"10.1109/TCST.2024.3386062","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear MPC, this constraint is generally taken on a polyhedral set, leading to a quadratic optimization problem. However, the use of an ellipsoidal terminal constraint may be desirable, leading to an optimization problem with a quadratic constraint. In this case, the optimization problem can be solved using second-order cone (SOC) programming solvers, since the quadratic constraint can be posed as a SOC constraint, at the expense of adding additional slack variables and possibly compromising the simple structure of the solver ingredients. In this brief, we present a sparse solver for linear MPC subject to a terminal ellipsoidal constraint based on the alternating direction method of multipliers (ADMM) algorithm in which we directly deal with the quadratic constraints without having to resort to the use of a SOC constraint nor the inclusion of additional decision variables. The solver is suitable for its use in embedded systems, since it is sparse, has a small memory footprint, and requires no external libraries. We compare its performance against other approaches from the literature.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2376-2384"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10502234/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Model predictive control (MPC) typically includes a terminal constraint to guarantee stability of the closed-loop system under nominal conditions. In linear MPC, this constraint is generally taken on a polyhedral set, leading to a quadratic optimization problem. However, the use of an ellipsoidal terminal constraint may be desirable, leading to an optimization problem with a quadratic constraint. In this case, the optimization problem can be solved using second-order cone (SOC) programming solvers, since the quadratic constraint can be posed as a SOC constraint, at the expense of adding additional slack variables and possibly compromising the simple structure of the solver ingredients. In this brief, we present a sparse solver for linear MPC subject to a terminal ellipsoidal constraint based on the alternating direction method of multipliers (ADMM) algorithm in which we directly deal with the quadratic constraints without having to resort to the use of a SOC constraint nor the inclusion of additional decision variables. The solver is suitable for its use in embedded systems, since it is sparse, has a small memory footprint, and requires no external libraries. We compare its performance against other approaches from the literature.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.