{"title":"Prospect of Controlled Autoxidation to Produce High-Value Products from the Low-Value Petroleum Fractions","authors":"Muhammad N. Siddiquee","doi":"10.1002/tcr.202400015","DOIUrl":null,"url":null,"abstract":"<p>Substantial amounts of low-value light petroleum fractions and low-value heavy petroleum fractions, such as light naphtha, HVGO, and vacuum residue, are generated during the upgrading and refining of conventional and unconventional petroleum resources. The oil industry emphasizes economic diversification, aiming to produce high-value products from these low petroleum fractions through cost-effective and sustainable methods. Controlled autoxidation (oxidation with air) has the potential to produce industrially important oxygenates, including alcohols, and ketones, from the low-value light petroleum fractions. The produced alcohols can also be converted to olefin through catalytic dehydration. Following controlled autoxidation, the low-value heavy petroleum fractions can be utilized to produce value-added products, including carbon fiber precursors. It would reduce the production cost of a highly demandable product, carbon fiber. This review highlights the prospect of developing an alternative, sustainable, and economic method to produce value-added products from the low-value petroleum fractions following a controlled autoxidation approach.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 5","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400015","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Substantial amounts of low-value light petroleum fractions and low-value heavy petroleum fractions, such as light naphtha, HVGO, and vacuum residue, are generated during the upgrading and refining of conventional and unconventional petroleum resources. The oil industry emphasizes economic diversification, aiming to produce high-value products from these low petroleum fractions through cost-effective and sustainable methods. Controlled autoxidation (oxidation with air) has the potential to produce industrially important oxygenates, including alcohols, and ketones, from the low-value light petroleum fractions. The produced alcohols can also be converted to olefin through catalytic dehydration. Following controlled autoxidation, the low-value heavy petroleum fractions can be utilized to produce value-added products, including carbon fiber precursors. It would reduce the production cost of a highly demandable product, carbon fiber. This review highlights the prospect of developing an alternative, sustainable, and economic method to produce value-added products from the low-value petroleum fractions following a controlled autoxidation approach.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.