{"title":"Co-production of metallo-β-lactamase and OXA-type β-lactamases in carbapenem-resistant Acinetobacter baumannii clinical isolates in North East India","authors":"Shyamalima Saikia, Indrani Gogoi, Amos Oloo, Mohan Sharma, Minakshi Puzari, Pankaj Chetia","doi":"10.1007/s11274-024-03977-1","DOIUrl":null,"url":null,"abstract":"<p>Carbapenem-resistant <i>Acinetobacter baumannii</i> poses a significant threat to public health globally, especially due to its ability to produce multiple carbapenemases, leading to treatment challenges. This study aimed to investigate the antibiotic resistance pattern of carbapenem-resistant <i>A. baumannii</i> isolates collected from different clinical settings in North East India, focusing on their genotypic and phenotypic resistance profiles. A total of 172 multidrug-resistant <i>A. baumannii</i> isolates were collected and subjected to antibiotic susceptibility test using the Kirby–Bauer disk diffusion method. Various phenotypic tests were performed to detect extended-spectrum β-lactamase (ESBL), metallo-β-lactamase (MBL), class C AmpC β-lactamase (AmpC), and carbapenem hydrolyzing class D β-lactamase (CHDL) production among the isolates. Overexpression of carbapenemase and cephalosporinase genes was detected among the isolates through both phenotypic and genotypic investigation. The antibiotic resistance profile of the isolates revealed that all were multidrug-resistant; 25% were extensively drug-resistant, 9.30% were pan-drug-resistant, whereas 91.27% were resistant to carbapenems. In the genotypic investigation, 80.81% of isolates were reported harbouring at least one metallo-β-lactamase encoding gene, with <i>bla</i><sub>NDM</sub> being the most prevalent at 70.34%, followed by <i>bla</i><sub>IMP</sub> at 51.16% of isolates. Regarding class D carbapenemases, <i>bla</i><sub>OXA-51</sub> and <i>bla</i><sub>OXA-23</sub> genes were detected in all the tested isolates, while <i>bla</i><sub>OXA-24,</sub> <i>bla</i><sub>OXA-48,</sub> and <i>bla</i><sub>OXA-58</sub> were found in 15.11%, 6.97%, and 1.74% isolates respectively. Further analysis showed that 31.97% of isolates co-harboured ESBL, MBL, AmpC, and CHDL genes, while 31.39% of isolates co-harboured ESBL, MBL, and CHDL genes with or without IS<i>Aba</i>1 leading to extensively drug-resistant or pan drug-resistant phenotypes. This study highlights the complex genetic profile and antimicrobial-resistant pattern of the isolates circulating in North East India, emphasizing the urgent need for effective infection control measures and the development of alternative treatment strategies to combat these challenging pathogens.</p>","PeriodicalId":23744,"journal":{"name":"World Journal of Microbiology and Biotechnology","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11274-024-03977-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Carbapenem-resistant Acinetobacter baumannii poses a significant threat to public health globally, especially due to its ability to produce multiple carbapenemases, leading to treatment challenges. This study aimed to investigate the antibiotic resistance pattern of carbapenem-resistant A. baumannii isolates collected from different clinical settings in North East India, focusing on their genotypic and phenotypic resistance profiles. A total of 172 multidrug-resistant A. baumannii isolates were collected and subjected to antibiotic susceptibility test using the Kirby–Bauer disk diffusion method. Various phenotypic tests were performed to detect extended-spectrum β-lactamase (ESBL), metallo-β-lactamase (MBL), class C AmpC β-lactamase (AmpC), and carbapenem hydrolyzing class D β-lactamase (CHDL) production among the isolates. Overexpression of carbapenemase and cephalosporinase genes was detected among the isolates through both phenotypic and genotypic investigation. The antibiotic resistance profile of the isolates revealed that all were multidrug-resistant; 25% were extensively drug-resistant, 9.30% were pan-drug-resistant, whereas 91.27% were resistant to carbapenems. In the genotypic investigation, 80.81% of isolates were reported harbouring at least one metallo-β-lactamase encoding gene, with blaNDM being the most prevalent at 70.34%, followed by blaIMP at 51.16% of isolates. Regarding class D carbapenemases, blaOXA-51 and blaOXA-23 genes were detected in all the tested isolates, while blaOXA-24,blaOXA-48, and blaOXA-58 were found in 15.11%, 6.97%, and 1.74% isolates respectively. Further analysis showed that 31.97% of isolates co-harboured ESBL, MBL, AmpC, and CHDL genes, while 31.39% of isolates co-harboured ESBL, MBL, and CHDL genes with or without ISAba1 leading to extensively drug-resistant or pan drug-resistant phenotypes. This study highlights the complex genetic profile and antimicrobial-resistant pattern of the isolates circulating in North East India, emphasizing the urgent need for effective infection control measures and the development of alternative treatment strategies to combat these challenging pathogens.