Investigating the effect of oxygen vacancy on electronic, optical, thermoelectric and thermodynamic properties of CeO2 (ceria) for energy and ReRAM applications: A first-principles quantum analysis
Shafaat Hussain Mirza, Sikander Azam, Zeesham Abbas, Shoyebmohamad F. Shaikh
{"title":"Investigating the effect of oxygen vacancy on electronic, optical, thermoelectric and thermodynamic properties of CeO2 (ceria) for energy and ReRAM applications: A first-principles quantum analysis","authors":"Shafaat Hussain Mirza, Sikander Azam, Zeesham Abbas, Shoyebmohamad F. Shaikh","doi":"10.1142/s0217979225500389","DOIUrl":null,"url":null,"abstract":"<p>CeO<sub>2</sub> thin film-based devices have become hot favorite candidates for researchers due to the outstanding characteristics of ceria such as memory storage materials, high oxygen storage capacity, excellent chemical and thermal stability, high transparency in visible region and highly tunable energy band structures. Developing suitable materials for industrial uses like optoelectronic and thermoelectric devices is the primary goal of researchers in the field of renewable energy. Herein, we have investigated the optical, thermoelectric and thermodynamic properties of CeO<sub>2</sub> and <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> as promising candidates for energy applications using first-principles calculations. We can observe significant absorption of incident photons by CeO<sub>2</sub> and <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> near UV region. The highest peaks of the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are present around 3.7<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>eV in spin <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>↑</mi></math></span><span></span> channel, however, in spin <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>↓</mi></math></span><span></span> channel, the highest peaks of the <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are present around 3.5<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>eV. The most intense peaks that emerge are due to the transitions of O[<span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mn>2</mn><mi>p</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span><span></span>] to Ce [<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mn>4</mn><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>]. The investigated values of <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo stretchy=\"false\">(</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> reveal that CeO<sub>2</sub> and <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> are active optical materials. CeO<sub>2</sub> and <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> reflect a negligible number of incident photons (<span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mo>∼</mo><mn>2</mn><mn>0</mn></math></span><span></span>%) in the entire energy range. The positive value of the <i>S</i> shows that the CeO<sub>2</sub> under study is <i>p</i>-type semiconductor, while <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> is <i>n</i>-type semiconductor as its <i>S</i> value is negative. The <i>S</i> values for CeO<sub>2</sub> are close to the established standard. As a result, CeO<sub>2</sub> is a viable thermoelectric material for use in devices. The figure of merit (ZT) spectra reveals that CeO<sub>2</sub> (<span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">ZT</mtext></mstyle><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mn>1</mn></math></span><span></span>) is a more capable candidate for thermoelectric materials compared to <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> (<span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">ZT</mtext></mstyle><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>4</mn></math></span><span></span>). The investigated thermodynamic parameters reveal that CeO<sub>2</sub> and <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">CeO</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mstyle><mtext mathvariant=\"normal\">V</mtext></mstyle></mrow><mrow><mstyle><mtext mathvariant=\"normal\">O</mtext></mstyle></mrow></msub></math></span><span></span> are dynamically stable compounds.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"12 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500389","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
CeO2 thin film-based devices have become hot favorite candidates for researchers due to the outstanding characteristics of ceria such as memory storage materials, high oxygen storage capacity, excellent chemical and thermal stability, high transparency in visible region and highly tunable energy band structures. Developing suitable materials for industrial uses like optoelectronic and thermoelectric devices is the primary goal of researchers in the field of renewable energy. Herein, we have investigated the optical, thermoelectric and thermodynamic properties of CeO2 and as promising candidates for energy applications using first-principles calculations. We can observe significant absorption of incident photons by CeO2 and near UV region. The highest peaks of the are present around 3.7eV in spin channel, however, in spin channel, the highest peaks of the are present around 3.5eV. The most intense peaks that emerge are due to the transitions of O[] to Ce []. The investigated values of reveal that CeO2 and are active optical materials. CeO2 and reflect a negligible number of incident photons (%) in the entire energy range. The positive value of the S shows that the CeO2 under study is p-type semiconductor, while is n-type semiconductor as its S value is negative. The S values for CeO2 are close to the established standard. As a result, CeO2 is a viable thermoelectric material for use in devices. The figure of merit (ZT) spectra reveals that CeO2 () is a more capable candidate for thermoelectric materials compared to (). The investigated thermodynamic parameters reveal that CeO2 and are dynamically stable compounds.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.