Zuping Wang, Heyrim Cho, Peter Choyke, Doron Levy, Noriko Sato
{"title":"A Mathematical Model of TCR-T Cell Therapy for Cervical Cancer","authors":"Zuping Wang, Heyrim Cho, Peter Choyke, Doron Levy, Noriko Sato","doi":"10.1007/s11538-024-01261-9","DOIUrl":null,"url":null,"abstract":"<p>Engineered T cell receptor (TCR)-expressing T (TCR-T) cells are intended to drive strong anti-tumor responses upon recognition of the specific cancer antigen, resulting in rapid expansion in the number of TCR-T cells and enhanced cytotoxic functions, causing cancer cell death. However, although TCR-T cell therapy against cancers has shown promising results, it remains difficult to predict which patients will benefit from such therapy. We develop a mathematical model to identify mechanisms associated with an insufficient response in a mouse cancer model. We consider a dynamical system that follows the population of cancer cells, effector TCR-T cells, regulatory T cells (Tregs), and “non-cancer-killing” TCR-T cells. We demonstrate that the majority of TCR-T cells within the tumor are “non-cancer-killing” TCR-T cells, such as exhausted cells, which contribute little or no direct cytotoxicity in the tumor microenvironment (TME). We also establish two important factors influencing tumor regression: the reversal of the immunosuppressive TME following depletion of Tregs, and the increased number of effector TCR-T cells with antitumor activity. Using mathematical modeling, we show that certain parameters, such as increasing the cytotoxicity of effector TCR-T cells and modifying the number of TCR-T cells, play important roles in determining outcomes.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"69 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01261-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineered T cell receptor (TCR)-expressing T (TCR-T) cells are intended to drive strong anti-tumor responses upon recognition of the specific cancer antigen, resulting in rapid expansion in the number of TCR-T cells and enhanced cytotoxic functions, causing cancer cell death. However, although TCR-T cell therapy against cancers has shown promising results, it remains difficult to predict which patients will benefit from such therapy. We develop a mathematical model to identify mechanisms associated with an insufficient response in a mouse cancer model. We consider a dynamical system that follows the population of cancer cells, effector TCR-T cells, regulatory T cells (Tregs), and “non-cancer-killing” TCR-T cells. We demonstrate that the majority of TCR-T cells within the tumor are “non-cancer-killing” TCR-T cells, such as exhausted cells, which contribute little or no direct cytotoxicity in the tumor microenvironment (TME). We also establish two important factors influencing tumor regression: the reversal of the immunosuppressive TME following depletion of Tregs, and the increased number of effector TCR-T cells with antitumor activity. Using mathematical modeling, we show that certain parameters, such as increasing the cytotoxicity of effector TCR-T cells and modifying the number of TCR-T cells, play important roles in determining outcomes.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.