{"title":"Innovative lightweight concrete: effect of fiber, bacteria and nanomaterials","authors":"Hatice Elif Beytekin, Öznur Biricik Altun, Ali Mardani, Filiz Şenkal Sezer","doi":"10.1007/s13726-024-01313-w","DOIUrl":null,"url":null,"abstract":"<div><p>It was reported that various studies have been carried out to increase the strength, permeability and durability performances of lightweight concrete (LC) mixtures. Extensive research was carried out on the production of sustainable and ecologic LC. In this context, the use of various innovative materials and methods have been demonstrated. In this direction, increasing the service life of concrete produced by the use of fiber, nanomaterials and self-healing with bacteria is one of the applied methods. In this study, the effects of the use of fiber, nanomaterials and bacteria on the workability, unit weight, strength, toughness, modulus of elasticity, impact resistance, permeability, drying-shrinkage, freeze–thaw, high temperature resistance, thermal conductivity performance of LC mixtures have been compared in detail. It was reported that workability, specific gravity, permeability, thermal conductivity and drying-shrinkage values decrease, while strength, high temperature resistance, freeze–thaw resistance and toughness performance increase with the addition of fiber and nanomaterials to LC mixtures. While it was emphasized that the strength and permeability performance and elasticity modulus values of the mixtures increased with the addition of bacteria. In addition, the use of fiber has insignificant effect in terms of the modulus of elasticity.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"33 9","pages":"1327 - 1350"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13726-024-01313-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01313-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
It was reported that various studies have been carried out to increase the strength, permeability and durability performances of lightweight concrete (LC) mixtures. Extensive research was carried out on the production of sustainable and ecologic LC. In this context, the use of various innovative materials and methods have been demonstrated. In this direction, increasing the service life of concrete produced by the use of fiber, nanomaterials and self-healing with bacteria is one of the applied methods. In this study, the effects of the use of fiber, nanomaterials and bacteria on the workability, unit weight, strength, toughness, modulus of elasticity, impact resistance, permeability, drying-shrinkage, freeze–thaw, high temperature resistance, thermal conductivity performance of LC mixtures have been compared in detail. It was reported that workability, specific gravity, permeability, thermal conductivity and drying-shrinkage values decrease, while strength, high temperature resistance, freeze–thaw resistance and toughness performance increase with the addition of fiber and nanomaterials to LC mixtures. While it was emphasized that the strength and permeability performance and elasticity modulus values of the mixtures increased with the addition of bacteria. In addition, the use of fiber has insignificant effect in terms of the modulus of elasticity.
期刊介绍:
Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.