Manish Kumar MD , Pengyi Yan PhD , George A. Kuchel MD , Ming Xu PhD
{"title":"Cellular Senescence as a Targetable Risk Factor for Cardiovascular Diseases","authors":"Manish Kumar MD , Pengyi Yan PhD , George A. Kuchel MD , Ming Xu PhD","doi":"10.1016/j.jacbts.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>The prevalence of cardiovascular diseases markedly rises with age. Cellular senescence, a hallmark of aging, is characterized by irreversible cell cycle arrest and the manifestation of a senescence-associated secretory phenotype, which has emerged as a significant contributor to aging, mortality, and a spectrum of chronic ailments. An increasing body of preclinical and clinical research has established connections between senescence, senescence-associated secretory phenotype, and age-related cardiac and vascular pathologies. This review comprehensively outlines studies delving into the detrimental impact of senescence on various cardiovascular diseases, encompassing systemic atherosclerosis (including coronary artery disease, stroke, and peripheral arterial disease), as well as conditions such as hypertension, congestive heart failure, arrhythmias, and valvular heart diseases. In addition, we have preclinical studies demonstrating the beneficial effects of senolytics—a class of drugs designed to eliminate senescent cells selectively across diverse cardiovascular disease scenarios. Finally, we address knowledge gaps on the influence of senescence on cardiovascular systems and discuss the future trajectory of strategies targeting senescence for cardiovascular diseases.</p></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"9 4","pages":"Pages 522-534"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452302X23005296/pdfft?md5=2d13297ee94e2c3226e4960e2d55ca1e&pid=1-s2.0-S2452302X23005296-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X23005296","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of cardiovascular diseases markedly rises with age. Cellular senescence, a hallmark of aging, is characterized by irreversible cell cycle arrest and the manifestation of a senescence-associated secretory phenotype, which has emerged as a significant contributor to aging, mortality, and a spectrum of chronic ailments. An increasing body of preclinical and clinical research has established connections between senescence, senescence-associated secretory phenotype, and age-related cardiac and vascular pathologies. This review comprehensively outlines studies delving into the detrimental impact of senescence on various cardiovascular diseases, encompassing systemic atherosclerosis (including coronary artery disease, stroke, and peripheral arterial disease), as well as conditions such as hypertension, congestive heart failure, arrhythmias, and valvular heart diseases. In addition, we have preclinical studies demonstrating the beneficial effects of senolytics—a class of drugs designed to eliminate senescent cells selectively across diverse cardiovascular disease scenarios. Finally, we address knowledge gaps on the influence of senescence on cardiovascular systems and discuss the future trajectory of strategies targeting senescence for cardiovascular diseases.
期刊介绍:
JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.