{"title":"Explainable machine learning for predicting the geographical origin of Chinese Oysters via mineral elements analysis","authors":"Xuming Kang , Yanfang Zhao , Lin Yao , Zhijun Tan","doi":"10.1016/j.crfs.2024.100738","DOIUrl":null,"url":null,"abstract":"<div><p>The traceability of geographic origin is essential for guaranteeing the quality, safety, and protection of oyster brands. However, the current outcomes of traceability lack credibility as they do not adequately explain the model's predictions. Consequently, we conducted a study to evaluate the efficacy of utilizing explainable machine learning combined with mineral elements analysis. The study findings revealed that 18 elements have the ability to determine regional orientation. Simultaneously, individuals should pay closer attention to the potential risks associated with oyster consumption due to the regional differences in essential and toxic elements they contain. Light gradient boosting machine (LightGBM) model exhibited indistinguishable performance, achieving flawless accuracy, precision, recall, F1 score and AUC, with values of 96.77%, 96.43%, 98.53%, 97.32% and 0.998, respectively. The SHapley Additive exPlanations (SHAP) method was used to evaluate the output of the LightGBM model, revealing differences in feature interactions among oysters from different provinces. Specifically, the features Na, Zn, V, Mg, and K were found to have a significant impact on the predictive process of the model. Consistent with existing research, the use of explainable machine learning techniques can provide insights into the complex connections between important product attributes and relevant geographical information.</p></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665927124000649/pdfft?md5=aff510fde53b3e34edb47de00f9695a0&pid=1-s2.0-S2665927124000649-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927124000649","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The traceability of geographic origin is essential for guaranteeing the quality, safety, and protection of oyster brands. However, the current outcomes of traceability lack credibility as they do not adequately explain the model's predictions. Consequently, we conducted a study to evaluate the efficacy of utilizing explainable machine learning combined with mineral elements analysis. The study findings revealed that 18 elements have the ability to determine regional orientation. Simultaneously, individuals should pay closer attention to the potential risks associated with oyster consumption due to the regional differences in essential and toxic elements they contain. Light gradient boosting machine (LightGBM) model exhibited indistinguishable performance, achieving flawless accuracy, precision, recall, F1 score and AUC, with values of 96.77%, 96.43%, 98.53%, 97.32% and 0.998, respectively. The SHapley Additive exPlanations (SHAP) method was used to evaluate the output of the LightGBM model, revealing differences in feature interactions among oysters from different provinces. Specifically, the features Na, Zn, V, Mg, and K were found to have a significant impact on the predictive process of the model. Consistent with existing research, the use of explainable machine learning techniques can provide insights into the complex connections between important product attributes and relevant geographical information.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.