Electrostatically hindered diffusion for predictable release of encapsulated cationic antimicrobials†

Viktor Eriksson, Erik Nygren, Romain Bordes, Lars Evenäs and Markus Andersson Trojer
{"title":"Electrostatically hindered diffusion for predictable release of encapsulated cationic antimicrobials†","authors":"Viktor Eriksson, Erik Nygren, Romain Bordes, Lars Evenäs and Markus Andersson Trojer","doi":"10.1039/D3PM00025G","DOIUrl":null,"url":null,"abstract":"<p >A common challenge in infection control is uncontrolled and unpredictable rapid release of antimicrobials – with ramifications on antimicrobial resistance (AMR) development and pollution – that makes it difficult to determine appropriate dosage levels and treatment times. An important class of antimicrobials is surface-active cationic substances, whose charge can be exploited for manipulating both their encapsulation and controlled release. As a proof of concept, the cationic antimicrobial octenidine dihydrochloride (OCT) was encapsulated in a microcapsule matrix of poly(<small>D</small>,<small>L</small>-lactide-<em>co</em>-glycolide) (PLGA) bearing anionic carboxylate end groups. The strong PLGA–OCT interaction was verified by infrared spectroscopy and by comparing the release of OCT to its uptake into empty microcapsules. By expanding a Fickian diffusion model, the binding event was estimated to result in a 10-fold reduction in effective diffusivity resulting in a sustained release maintained for several months. Using this model, the impacts of temperature and release medium solubilizers were globally examined to improve predictability. By exceeding the glass transition temperature of hydrated PLGA, the diffusional release was significantly faster at 37 °C with a diffusivity 200 times that at room temperature. The addition of solubilizers increased the OCT partitioning towards the aqueous phase without affecting its diffusivity.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 1","pages":" 47-56"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d3pm00025g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/pm/d3pm00025g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A common challenge in infection control is uncontrolled and unpredictable rapid release of antimicrobials – with ramifications on antimicrobial resistance (AMR) development and pollution – that makes it difficult to determine appropriate dosage levels and treatment times. An important class of antimicrobials is surface-active cationic substances, whose charge can be exploited for manipulating both their encapsulation and controlled release. As a proof of concept, the cationic antimicrobial octenidine dihydrochloride (OCT) was encapsulated in a microcapsule matrix of poly(D,L-lactide-co-glycolide) (PLGA) bearing anionic carboxylate end groups. The strong PLGA–OCT interaction was verified by infrared spectroscopy and by comparing the release of OCT to its uptake into empty microcapsules. By expanding a Fickian diffusion model, the binding event was estimated to result in a 10-fold reduction in effective diffusivity resulting in a sustained release maintained for several months. Using this model, the impacts of temperature and release medium solubilizers were globally examined to improve predictability. By exceeding the glass transition temperature of hydrated PLGA, the diffusional release was significantly faster at 37 °C with a diffusivity 200 times that at room temperature. The addition of solubilizers increased the OCT partitioning towards the aqueous phase without affecting its diffusivity.

Abstract Image

静电阻碍扩散技术可预测封装阳离子抗菌剂的释放†。
感染控制中的一个共同挑战是抗菌剂不受控制和不可预测的快速释放,这对抗菌剂耐药性(AMR)的发展和污染都有影响,因此很难确定适当的剂量水平和治疗时间。表面活性阳离子物质是一类重要的抗菌剂,可以利用其电荷来控制其封装和释放。作为概念验证,阳离子抗菌剂盐酸辛烯定(OCT)被封装在带有阴离子羧酸末端基团的聚(D,L-乳酸-共聚乙二醇)(PLGA)微胶囊基质中。通过红外光谱和比较 OCT 的释放与空微胶囊的吸收,验证了 PLGA 与 OCT 的强烈相互作用。通过扩展菲克扩散模型,估计结合事件会导致有效扩散率降低 10 倍,从而使持续释放保持数月之久。利用该模型,对温度和释放介质增溶剂的影响进行了全面研究,以提高可预测性。通过超过水合聚乳酸的玻璃化转变温度,扩散释放速度在 37 °C 时明显加快,扩散率是室温时的 200 倍。添加增溶剂增加了 OCT 向水相的分配,但不影响其扩散性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信