Matthias Birner , Patrick Diehl , Robert Lipton , Marc Alexander Schweitzer
{"title":"A multiscale fracture model using peridynamic enrichment of finite elements within an adaptive partition of unity: Experimental validation","authors":"Matthias Birner , Patrick Diehl , Robert Lipton , Marc Alexander Schweitzer","doi":"10.1016/j.mechrescom.2024.104275","DOIUrl":null,"url":null,"abstract":"<div><p>Partition of unity methods (PUM) are of domain decomposition type and provide the opportunity for multiscale and multiphysics numerical modeling. Here, we apply Peridynamic (PD) enrichment to propagate cracks in the PUM global–local enrichment scheme. We apply linear elasticity globally and PD over local zones where fractures occur. The elastic fields provide appropriate boundary data for local PD simulations on a subdomain containing the crack tip to grow the crack. Once the updated crack path is found the elastic field in the body and surrounding the crack is updated using the PUM basis with an elastic field enrichment near the crack. The subdomain for the PD simulation is chosen to include the current crack tip as well as features that influence crack growth. This paper is part II of this series and validates the combined PD/PUM simulator against the experimental results. The results of numerical simulation show that we attain good agreement between experiment and simulation with a local PD subdomain that is moving with the crack tip and adaptively chosen size.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641324000351","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Partition of unity methods (PUM) are of domain decomposition type and provide the opportunity for multiscale and multiphysics numerical modeling. Here, we apply Peridynamic (PD) enrichment to propagate cracks in the PUM global–local enrichment scheme. We apply linear elasticity globally and PD over local zones where fractures occur. The elastic fields provide appropriate boundary data for local PD simulations on a subdomain containing the crack tip to grow the crack. Once the updated crack path is found the elastic field in the body and surrounding the crack is updated using the PUM basis with an elastic field enrichment near the crack. The subdomain for the PD simulation is chosen to include the current crack tip as well as features that influence crack growth. This paper is part II of this series and validates the combined PD/PUM simulator against the experimental results. The results of numerical simulation show that we attain good agreement between experiment and simulation with a local PD subdomain that is moving with the crack tip and adaptively chosen size.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.