Yajing Zhang , Tao Sun , Linqi Liu , Xupeng Cao , Weiwen Zhang , Wangyin Wang , Can Li
{"title":"Engineering a solar formic acid/pentose (SFAP) pathway in Escherichia coli for lactic acid production","authors":"Yajing Zhang , Tao Sun , Linqi Liu , Xupeng Cao , Weiwen Zhang , Wangyin Wang , Can Li","doi":"10.1016/j.ymben.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Microbial CO<sub>2</sub> fixation into lactic acid (LA) is an important approach for low-carbon biomanufacturing. Engineering microbes to utilize CO<sub>2</sub> and sugar as co-substrates can create efficient pathways through input of moderate reducing power to drive CO<sub>2</sub> fixation into product. However, to achieve complete conservation of organic carbon, how to engineer the CO<sub>2</sub>-fixing modules compatible with native central metabolism and merge the processes for improving bioproduction of LA is a big challenge. In this study, we designed and constructed a solar formic acid/pentose (SFAP) pathway in <em>Escherichia coli</em>, which enabled CO<sub>2</sub> fixation merging into sugar catabolism to produce LA. In the SFAP pathway, adequate reducing equivalents from formate oxidation drive glucose metabolism shifting from glycolysis to the pentose phosphate pathway. The Rubisco-based CO<sub>2</sub> fixation and sequential reduction of C3 intermediates are conducted to produce LA stoichiometrically. CO<sub>2</sub> fixation theoretically can bring a 20% increase of LA production compared with sole glucose feedstock. This SFAP pathway in the integration of photoelectrochemical cell and an engineered <em>Escherichia coli</em> opens an efficient way for fixing CO<sub>2</sub> into value-added bioproducts.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000569","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial CO2 fixation into lactic acid (LA) is an important approach for low-carbon biomanufacturing. Engineering microbes to utilize CO2 and sugar as co-substrates can create efficient pathways through input of moderate reducing power to drive CO2 fixation into product. However, to achieve complete conservation of organic carbon, how to engineer the CO2-fixing modules compatible with native central metabolism and merge the processes for improving bioproduction of LA is a big challenge. In this study, we designed and constructed a solar formic acid/pentose (SFAP) pathway in Escherichia coli, which enabled CO2 fixation merging into sugar catabolism to produce LA. In the SFAP pathway, adequate reducing equivalents from formate oxidation drive glucose metabolism shifting from glycolysis to the pentose phosphate pathway. The Rubisco-based CO2 fixation and sequential reduction of C3 intermediates are conducted to produce LA stoichiometrically. CO2 fixation theoretically can bring a 20% increase of LA production compared with sole glucose feedstock. This SFAP pathway in the integration of photoelectrochemical cell and an engineered Escherichia coli opens an efficient way for fixing CO2 into value-added bioproducts.
微生物将二氧化碳固定为乳酸(LA)是低碳生物制造的重要方法。利用微生物工程技术将二氧化碳和糖作为共底物,可以通过输入适度的还原力来驱动二氧化碳固定到产品中,从而创建高效的途径。然而,要实现对有机碳的完全保护,如何设计出与原生中央代谢兼容的二氧化碳固定模块,并将这些过程合并以提高 LA 的生物生产是一个巨大的挑战。在这项研究中,我们在大肠杆菌中设计并构建了太阳能甲酸/戊糖(SFAP)途径,使二氧化碳固定与糖分解代谢相结合,生产 LA。在 SFAP 途径中,甲酸氧化产生的足够还原当量推动葡萄糖代谢从糖酵解转向磷酸戊糖途径。以 Rubisco 为基础的 CO2 固定和 C3 中间产物的顺序还原按比例产生 LA。与单纯的葡萄糖原料相比,二氧化碳固定理论上可使 LA 的产量提高 20%。这种将光电化学电池和工程大肠杆菌整合在一起的 SFAP 途径为将 CO2 固定为高附加值生物产品开辟了一条有效途径。
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.