Ling Yan , Yaqi Cao , Linhai Hou , Tianyu Luo , Meiqi Li , Shengjie Gao , Lei Wang , Kangliang Sheng , Lei Zheng
{"title":"Ginger exosome-like nanoparticle-derived miRNA therapeutics: A strategic inhibitor of intestinal inflammation","authors":"Ling Yan , Yaqi Cao , Linhai Hou , Tianyu Luo , Meiqi Li , Shengjie Gao , Lei Wang , Kangliang Sheng , Lei Zheng","doi":"10.1016/j.jare.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>MicroRNAs (miRNAs) involve in destabilising messenger RNA or repressing translation of target molecules. Ginger-derived exosome-like nanoparticles (GELNs) play a crucial role in modulating intestinal inflammation. Moreover, GELNs contain highly heterogeneous miRNA. However, the role of miRNAs derived from GELNs in immunomodulation remains unclear.</div></div><div><h3>Objectives</h3><div>This study aimed to elucidate the molecular basis of the unique biological effects mediated by miRNA derived from GELNs on macrophages.</div></div><div><h3>Methods</h3><div>GELNs were isolated using a combination of commercial exosome isolation kits and the differential centrifugation method, and the lipid composition of GELNs was determined using liquid chromatography-mass spectrometry. Subsequently, PKH26 labelled GELNs were taken up by macrophages. Furthermore, the modulation of inflammatory and immune responses by GELNs or osa-miR164d was assessed through the RNA-seq, RT-qPCR, online databases, and dual luciferase reporter assays to explore the underlying mechanisms of osa-miR164d. Biomimetic exosomes loaded with osa-miR164d were prepared using a microfluidic mixing device and systematically characterized. The therapeutic effects of osa-miR164d on relieving colitis were evaluated.</div></div><div><h3>Results</h3><div>We report for the first time that GELNs-derived osa-miR164d is a regulatory factor of reprogramming macrophage polarization, thereby inhibiting the intestinal inflammatory response. Mechanistically, osa-miR164d directly targets the 3′-UTRs of TAB1, which regulates macrophage polarization through the downregulation of NF-κB expression. In addition, We have designed a biomimetic exosome mimicking GELNs to deliver osa-miR164d (osa-miR164d-MGELNs). Notably, the osa-miR164d-MGELNs can efficiently reprogram macrophages to alleviate colitis-related symptoms.</div></div><div><h3>Conclusion</h3><div>Our findings enhance the systematic understanding of how GELNs-derived osa-miR164d mediates cross-kingdom communication and provide an original engineering paradigm for mimicking GELNs to transfer miRNA.</div></div>","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"69 ","pages":"Pages 1-15"},"PeriodicalIF":11.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090123224001309","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
MicroRNAs (miRNAs) involve in destabilising messenger RNA or repressing translation of target molecules. Ginger-derived exosome-like nanoparticles (GELNs) play a crucial role in modulating intestinal inflammation. Moreover, GELNs contain highly heterogeneous miRNA. However, the role of miRNAs derived from GELNs in immunomodulation remains unclear.
Objectives
This study aimed to elucidate the molecular basis of the unique biological effects mediated by miRNA derived from GELNs on macrophages.
Methods
GELNs were isolated using a combination of commercial exosome isolation kits and the differential centrifugation method, and the lipid composition of GELNs was determined using liquid chromatography-mass spectrometry. Subsequently, PKH26 labelled GELNs were taken up by macrophages. Furthermore, the modulation of inflammatory and immune responses by GELNs or osa-miR164d was assessed through the RNA-seq, RT-qPCR, online databases, and dual luciferase reporter assays to explore the underlying mechanisms of osa-miR164d. Biomimetic exosomes loaded with osa-miR164d were prepared using a microfluidic mixing device and systematically characterized. The therapeutic effects of osa-miR164d on relieving colitis were evaluated.
Results
We report for the first time that GELNs-derived osa-miR164d is a regulatory factor of reprogramming macrophage polarization, thereby inhibiting the intestinal inflammatory response. Mechanistically, osa-miR164d directly targets the 3′-UTRs of TAB1, which regulates macrophage polarization through the downregulation of NF-κB expression. In addition, We have designed a biomimetic exosome mimicking GELNs to deliver osa-miR164d (osa-miR164d-MGELNs). Notably, the osa-miR164d-MGELNs can efficiently reprogram macrophages to alleviate colitis-related symptoms.
Conclusion
Our findings enhance the systematic understanding of how GELNs-derived osa-miR164d mediates cross-kingdom communication and provide an original engineering paradigm for mimicking GELNs to transfer miRNA.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.