Error-mitigated fermionic classical shadows on noisy quantum devices

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Bujiao Wu, Dax Enshan Koh
{"title":"Error-mitigated fermionic classical shadows on noisy quantum devices","authors":"Bujiao Wu, Dax Enshan Koh","doi":"10.1038/s41534-024-00836-7","DOIUrl":null,"url":null,"abstract":"<p>Efficiently estimating fermionic Hamiltonian expectation values is vital for simulating various physical systems. Classical shadow (CS) algorithms offer a solution by reducing the number of quantum state copies needed, but noise in quantum devices poses challenges. We propose an error-mitigated CS algorithm assuming gate-independent, time-stationary, and Markovian (GTM) noise. For <i>n</i>-qubit systems, our algorithm, which employs the easily prepared initial state <span>\\(\\left\\vert {0}^{n}\\right\\rangle \\,\\left\\langle {0}^{n}\\right\\vert\\)</span> assumed to be noiseless, efficiently estimates <i>k</i>-RDMs with <span>\\(\\widetilde{{{{\\mathcal{O}}}}}(k{n}^{k})\\)</span> state copies and <span>\\(\\widetilde{{{{\\mathcal{O}}}}}(\\sqrt{n})\\)</span> calibration measurements for GTM noise with constant fidelities. We show that our algorithm is robust against noise types like depolarizing, damping, and <i>X</i>-rotation noise with constant strengths, showing scalings akin to prior CS algorithms for fermions but with better noise resilience. Numerical simulations confirm our algorithm’s efficacy in noisy settings, suggesting its viability for near-term quantum devices.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"55 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00836-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiently estimating fermionic Hamiltonian expectation values is vital for simulating various physical systems. Classical shadow (CS) algorithms offer a solution by reducing the number of quantum state copies needed, but noise in quantum devices poses challenges. We propose an error-mitigated CS algorithm assuming gate-independent, time-stationary, and Markovian (GTM) noise. For n-qubit systems, our algorithm, which employs the easily prepared initial state \(\left\vert {0}^{n}\right\rangle \,\left\langle {0}^{n}\right\vert\) assumed to be noiseless, efficiently estimates k-RDMs with \(\widetilde{{{{\mathcal{O}}}}}(k{n}^{k})\) state copies and \(\widetilde{{{{\mathcal{O}}}}}(\sqrt{n})\) calibration measurements for GTM noise with constant fidelities. We show that our algorithm is robust against noise types like depolarizing, damping, and X-rotation noise with constant strengths, showing scalings akin to prior CS algorithms for fermions but with better noise resilience. Numerical simulations confirm our algorithm’s efficacy in noisy settings, suggesting its viability for near-term quantum devices.

Abstract Image

噪声量子器件上的误差减弱费米经典阴影
有效估计费米子哈密顿期望值对模拟各种物理系统至关重要。经典阴影(CS)算法通过减少所需的量子态副本数量提供了一种解决方案,但量子设备中的噪声带来了挑战。我们提出了一种错误缓解的 CS 算法,假定噪声与门无关、时间静止且马尔可夫(GTM)。对于n量子比特系统,我们的算法采用了易于准备的初始状态(left\vert {0}^{n}\right\rangle {0}^{n}\right/vert/vert),并假定该初始状态是无噪声的、用 \(\widetilde{{{{\mathcal{O}}}}}(k{n}^{k})\) 状态副本和 \(\widetilde{{{{\mathcal{O}}}}}(\sqrt{n})\) 校准测量对具有恒定保真度的 GTM 噪声有效地估计 k-RDM。我们表明,我们的算法对去极化、阻尼和X-旋转等噪声类型具有恒定的鲁棒性,显示出与先前费米子CS算法类似的扩展性,但具有更好的抗噪声能力。数值模拟证实了我们的算法在噪声环境中的有效性,表明它在近期量子设备中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信