Vimentin filaments integrate low-complexity domains in a complex helical structure

IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Matthias Eibauer, Miriam S. Weber, Rafael Kronenberg-Tenga, Charlie T. Beales, Rajaa Boujemaa-Paterski, Yagmur Turgay, Suganya Sivagurunathan, Julia Kraxner, Sarah Köster, Robert D. Goldman, Ohad Medalia
{"title":"Vimentin filaments integrate low-complexity domains in a complex helical structure","authors":"Matthias Eibauer, Miriam S. Weber, Rafael Kronenberg-Tenga, Charlie T. Beales, Rajaa Boujemaa-Paterski, Yagmur Turgay, Suganya Sivagurunathan, Julia Kraxner, Sarah Köster, Robert D. Goldman, Ohad Medalia","doi":"10.1038/s41594-024-01261-2","DOIUrl":null,"url":null,"abstract":"Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion-beam milling, cryo-electron microscopy and tomography to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, intertwined and flexible helical structure of 40 α-helices in cross-section, organized into five protofibrils. Surprisingly, the intrinsically disordered head domains form a fiber in the lumen of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking mechanical strength and stretchability. Using cryo-electron microscopy and integrative modeling, the authors defined the structure of vimentin intermediate filaments, revealing a helical tube built of five protofibrils that enclose a fiber of low-complexity N-terminal domains.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 6","pages":"939-949"},"PeriodicalIF":12.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01261-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01261-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intermediate filaments (IFs) are integral components of the cytoskeleton. They provide cells with tissue-specific mechanical properties and are involved in numerous cellular processes. Due to their intricate architecture, a 3D structure of IFs has remained elusive. Here we use cryo-focused ion-beam milling, cryo-electron microscopy and tomography to obtain a 3D structure of vimentin IFs (VIFs). VIFs assemble into a modular, intertwined and flexible helical structure of 40 α-helices in cross-section, organized into five protofibrils. Surprisingly, the intrinsically disordered head domains form a fiber in the lumen of VIFs, while the intrinsically disordered tails form lateral connections between the protofibrils. Our findings demonstrate how protein domains of low sequence complexity can complement well-folded protein domains to construct a biopolymer with striking mechanical strength and stretchability. Using cryo-electron microscopy and integrative modeling, the authors defined the structure of vimentin intermediate filaments, revealing a helical tube built of five protofibrils that enclose a fiber of low-complexity N-terminal domains.

Abstract Image

Abstract Image

波形蛋白丝在复杂的螺旋结构中整合了低复杂度结构域
中间丝(IFs)是细胞骨架不可或缺的组成部分。它们为细胞提供组织特异性的机械特性,并参与许多细胞过程。由于其结构复杂,中间丝的三维结构一直难以捉摸。在这里,我们利用低温聚焦离子束铣削、低温电子显微镜和层析成像技术获得了波形蛋白IFs(VIFs)的三维结构。VIFs 由横截面为 40 α-螺旋的模块化、交织和灵活的螺旋结构组成,并组织成五条原纤维。令人惊讶的是,内在无序的头部结构域在 VIF 的内腔中形成纤维,而内在无序的尾部结构域则在原纤维之间形成横向连接。我们的研究结果表明,低序列复杂性的蛋白质结构域可以与折叠良好的蛋白质结构域互补,从而构建出具有惊人机械强度和拉伸性的生物聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Structural & Molecular Biology
Nature Structural & Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOPHYSICS
CiteScore
22.00
自引率
1.80%
发文量
160
审稿时长
3-8 weeks
期刊介绍: Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信