Tight Lieb–Robinson Bound for approximation ratio in quantum annealing

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Arthur Braida, Simon Martiel, Ioan Todinca
{"title":"Tight Lieb–Robinson Bound for approximation ratio in quantum annealing","authors":"Arthur Braida, Simon Martiel, Ioan Todinca","doi":"10.1038/s41534-024-00832-x","DOIUrl":null,"url":null,"abstract":"<p>Quantum annealing (QA) holds promise for optimization problems in quantum computing, especially for combinatorial optimization. This analog framework attracts attention for its potential to address complex problems. Its gate-based homologous, QAOA with proven performance, has attracted a lot of attention to the NISQ era. Several numerical benchmarks try to compare these two metaheuristics, however, classical computational power highly limits the performance insights. In this work, we introduce a parametrized version of QA enabling a precise 1-local analysis of the algorithm. We develop a tight Lieb–Robinson bound for regular graphs, achieving the best-known numerical value to analyze QA locally. Studying MaxCut over cubic graph as a benchmark optimization problem, we show that a linear-schedule QA with a 1-local analysis achieves an approximation ratio over 0.7020, outperforming any known 1-local algorithms.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"34 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00832-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum annealing (QA) holds promise for optimization problems in quantum computing, especially for combinatorial optimization. This analog framework attracts attention for its potential to address complex problems. Its gate-based homologous, QAOA with proven performance, has attracted a lot of attention to the NISQ era. Several numerical benchmarks try to compare these two metaheuristics, however, classical computational power highly limits the performance insights. In this work, we introduce a parametrized version of QA enabling a precise 1-local analysis of the algorithm. We develop a tight Lieb–Robinson bound for regular graphs, achieving the best-known numerical value to analyze QA locally. Studying MaxCut over cubic graph as a benchmark optimization problem, we show that a linear-schedule QA with a 1-local analysis achieves an approximation ratio over 0.7020, outperforming any known 1-local algorithms.

Abstract Image

量子退火中近似率的李布-罗宾逊紧约束
量子退火(QA)有望解决量子计算中的优化问题,尤其是组合优化问题。这一模拟框架因其解决复杂问题的潜力而备受关注。其基于门的同源算法 QAOA 具有公认的性能,在 NISQ 时代吸引了大量关注。一些数值基准测试试图比较这两种元启发式算法,但传统的计算能力极大地限制了对其性能的深入了解。在这项工作中,我们引入了 QA 的参数化版本,从而能够对算法进行精确的 1 局部分析。我们为规则图开发了一个紧密的 Lieb-Robinson 约束,实现了对 QA 进行局部分析的已知最佳数值。以立方图上的 MaxCut 作为基准优化问题进行研究,我们发现采用 1 本地分析的线性调度 QA 近似比超过了 0.7020,优于任何已知的 1 本地算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信