Qingyun Kang, Xiaofang Zhang, Qianyue Feng, Lin Zhang, Mingyu Chu, Chaoran Li, Panpan Xu, Muhan Cao, Le He, Qiao Zhang* and Jinxing Chen*,
{"title":"Hydrogen Bubbles: Harmonizing Local Hydrogen Transfer for Efficient Plastic Hydro-Depolymerization","authors":"Qingyun Kang, Xiaofang Zhang, Qianyue Feng, Lin Zhang, Mingyu Chu, Chaoran Li, Panpan Xu, Muhan Cao, Le He, Qiao Zhang* and Jinxing Chen*, ","doi":"10.1021/acsnano.4c02062","DOIUrl":null,"url":null,"abstract":"<p >Hydro-depolymerization presents a promising avenue for transforming plastic waste into high-value hydrocarbons, offering significant potential for value-added recycling. However, a major challenge in this method arises from kinetic limitations due to insufficient hydrogen concentration near the active sites, requiring optimal catalytic performance only at higher hydrogen pressures. In this study, we address this hurdle by developing “hydrogen bubble catalysts” featuring Ru nanoparticles within mesoporous SBA-15 channels (Ru/SBA). The distinctive feature of Ru/SBA catalysts lies in their capacity for physical hydrogen storage and chemically reversible hydrogen spillover, ensuring a timely and ample hydrogen supply. Under identical reaction conditions, the catalytic activity of Ru/SBA surpassed that of Ru/SiO<sub>2</sub> (no hydrogen storage capacity) by over 4-fold. This substantial enhancement in catalytic performance provides significant opportunities for near atmospheric pressure hydro-depolymerization of plastic waste.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 17","pages":"11438–11448"},"PeriodicalIF":16.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c02062","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydro-depolymerization presents a promising avenue for transforming plastic waste into high-value hydrocarbons, offering significant potential for value-added recycling. However, a major challenge in this method arises from kinetic limitations due to insufficient hydrogen concentration near the active sites, requiring optimal catalytic performance only at higher hydrogen pressures. In this study, we address this hurdle by developing “hydrogen bubble catalysts” featuring Ru nanoparticles within mesoporous SBA-15 channels (Ru/SBA). The distinctive feature of Ru/SBA catalysts lies in their capacity for physical hydrogen storage and chemically reversible hydrogen spillover, ensuring a timely and ample hydrogen supply. Under identical reaction conditions, the catalytic activity of Ru/SBA surpassed that of Ru/SiO2 (no hydrogen storage capacity) by over 4-fold. This substantial enhancement in catalytic performance provides significant opportunities for near atmospheric pressure hydro-depolymerization of plastic waste.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.