Hydrogen Bubbles: Harmonizing Local Hydrogen Transfer for Efficient Plastic Hydro-Depolymerization

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-04-16 DOI:10.1021/acsnano.4c02062
Qingyun Kang, Xiaofang Zhang, Qianyue Feng, Lin Zhang, Mingyu Chu, Chaoran Li, Panpan Xu, Muhan Cao, Le He, Qiao Zhang* and Jinxing Chen*, 
{"title":"Hydrogen Bubbles: Harmonizing Local Hydrogen Transfer for Efficient Plastic Hydro-Depolymerization","authors":"Qingyun Kang,&nbsp;Xiaofang Zhang,&nbsp;Qianyue Feng,&nbsp;Lin Zhang,&nbsp;Mingyu Chu,&nbsp;Chaoran Li,&nbsp;Panpan Xu,&nbsp;Muhan Cao,&nbsp;Le He,&nbsp;Qiao Zhang* and Jinxing Chen*,&nbsp;","doi":"10.1021/acsnano.4c02062","DOIUrl":null,"url":null,"abstract":"<p >Hydro-depolymerization presents a promising avenue for transforming plastic waste into high-value hydrocarbons, offering significant potential for value-added recycling. However, a major challenge in this method arises from kinetic limitations due to insufficient hydrogen concentration near the active sites, requiring optimal catalytic performance only at higher hydrogen pressures. In this study, we address this hurdle by developing “hydrogen bubble catalysts” featuring Ru nanoparticles within mesoporous SBA-15 channels (Ru/SBA). The distinctive feature of Ru/SBA catalysts lies in their capacity for physical hydrogen storage and chemically reversible hydrogen spillover, ensuring a timely and ample hydrogen supply. Under identical reaction conditions, the catalytic activity of Ru/SBA surpassed that of Ru/SiO<sub>2</sub> (no hydrogen storage capacity) by over 4-fold. This substantial enhancement in catalytic performance provides significant opportunities for near atmospheric pressure hydro-depolymerization of plastic waste.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 17","pages":"11438–11448"},"PeriodicalIF":16.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c02062","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydro-depolymerization presents a promising avenue for transforming plastic waste into high-value hydrocarbons, offering significant potential for value-added recycling. However, a major challenge in this method arises from kinetic limitations due to insufficient hydrogen concentration near the active sites, requiring optimal catalytic performance only at higher hydrogen pressures. In this study, we address this hurdle by developing “hydrogen bubble catalysts” featuring Ru nanoparticles within mesoporous SBA-15 channels (Ru/SBA). The distinctive feature of Ru/SBA catalysts lies in their capacity for physical hydrogen storage and chemically reversible hydrogen spillover, ensuring a timely and ample hydrogen supply. Under identical reaction conditions, the catalytic activity of Ru/SBA surpassed that of Ru/SiO2 (no hydrogen storage capacity) by over 4-fold. This substantial enhancement in catalytic performance provides significant opportunities for near atmospheric pressure hydro-depolymerization of plastic waste.

Abstract Image

Abstract Image

氢气泡:协调局部氢转移,实现高效塑料加氢解聚
加氢解聚法是将塑料废料转化为高价值碳氢化合物的一条大有可为的途径,为增值回收利用提供了巨大潜力。然而,由于活性位点附近的氢浓度不足,这种方法面临的一个主要挑战是动力学限制,只有在氢气压力较高时才能达到最佳催化性能。在本研究中,我们通过在介孔 SBA-15 通道(Ru/SBA)内开发具有 Ru 纳米颗粒的 "氢气泡催化剂 "来解决这一难题。Ru/SBA 催化剂的显著特点在于其物理储氢能力和化学可逆氢溢出能力,从而确保及时、充足的氢供应。在相同的反应条件下,Ru/SBA 的催化活性超过 Ru/SiO2(无储氢能力)4 倍以上。催化性能的大幅提升为塑料废料的近常压水解提供了重要机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
文献相关原料
公司名称
产品信息
麦克林
Polypropylene (PP)
麦克林
High-density polyethylene (HDPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信