Fan Xiankai, Xiang Kaixiong, Zhou Wei, Deng Weina, Zhu Hai, Chen Liang, Chen Han
{"title":"A novel improvement strategy and a comprehensive mechanism insight for α-MnO2 energy storage in rechargeable aqueous zinc-ion batteries","authors":"Fan Xiankai, Xiang Kaixiong, Zhou Wei, Deng Weina, Zhu Hai, Chen Liang, Chen Han","doi":"10.1002/cey2.536","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries have been regarded as the most potential candidate to substitute lithium-ion batteries. However, many serious challenges such as suppressing zinc dendrite growth and undesirable reactions, and achieving fully accepted mechanism also have not been solved. Herein, the commensal composite microspheres with α-MnO<sub>2</sub> nano-wires and carbon nanotubes were achieved and could effectively suppress ZnSO<sub>4</sub>·3Zn(OH)<sub>2</sub>·nH<sub>2</sub>O rampant crystallization. The electrode assembled with the microspheres delivered a high initial capacity at a current density of 0.05 A g<sup>−1</sup> and maintained a significantly prominent capacity retention of 88% over 2500 cycles. Furthermore, a novel energy-storage mechanism, in which multivalent manganese oxides play a synergistic effect, was comprehensively investigated by the quantitative and qualitative analysis for ZnSO<sub>4</sub>·3Zn(OH)<sub>2</sub>·nH<sub>2</sub>O. The capacity contribution of multivalent manganese oxides and the crystal structure dissection in the transformed processes were completely identified. Therefore, our research could provide a novel strategy for designing improved electrode structure and a comprehensive understanding of the energy storage mechanism of α-MnO<sub>2</sub> cathodes.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.536","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.536","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc-ion batteries have been regarded as the most potential candidate to substitute lithium-ion batteries. However, many serious challenges such as suppressing zinc dendrite growth and undesirable reactions, and achieving fully accepted mechanism also have not been solved. Herein, the commensal composite microspheres with α-MnO2 nano-wires and carbon nanotubes were achieved and could effectively suppress ZnSO4·3Zn(OH)2·nH2O rampant crystallization. The electrode assembled with the microspheres delivered a high initial capacity at a current density of 0.05 A g−1 and maintained a significantly prominent capacity retention of 88% over 2500 cycles. Furthermore, a novel energy-storage mechanism, in which multivalent manganese oxides play a synergistic effect, was comprehensively investigated by the quantitative and qualitative analysis for ZnSO4·3Zn(OH)2·nH2O. The capacity contribution of multivalent manganese oxides and the crystal structure dissection in the transformed processes were completely identified. Therefore, our research could provide a novel strategy for designing improved electrode structure and a comprehensive understanding of the energy storage mechanism of α-MnO2 cathodes.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.