{"title":"Experimental and numerical studies on cyclic behavior of stiffened corrugated steel plate shear walls with different corrugation orientations","authors":"Lifei Feng, Hanwen Yang, Tianshu Sun, Jinping Ou","doi":"10.1002/eqe.4123","DOIUrl":null,"url":null,"abstract":"<p>Corrugated steel plate shear walls (CSPSWs) can be applied to high-rise building structures to serve as lateral load-bearing and energy-dissipating members. Arranging stiffeners on corrugated steel plates shows substantial potential to further improve the seismic performance of ordinary CSPSWs. This study experimentally and numerically investigated the hysteretic behavior of unstiffened and stiffened CSPSWs. Cyclic quasi-static tests were conducted on four, 1/2-scale, two-story, single-bay specimens with different corrugation orientations, including two specimens with unstiffened corrugated steel plates and two specimens installed with stiffened corrugated steel plates equipped with two pairs of stiffeners. According to the hysteretic curves of different specimens, the effects of corrugation orientations and arrangement of stiffeners were revealed in terms of the skeleton curves, energy-dissipating capacity, and stiffness degradation. Then, finite element (FE) models, which were applied to gain a deeper understanding of the experimental results, were established, and validated against the test results. This study demonstrated that the arrangement of stiffeners was effective in improving the seismic performance of CSPSWs regarding the ultimate shear strength and energy-dissipating capacity, while the influence of corrugation orientations on the performance of the specimens involved in this study could be ignored.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4123","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Corrugated steel plate shear walls (CSPSWs) can be applied to high-rise building structures to serve as lateral load-bearing and energy-dissipating members. Arranging stiffeners on corrugated steel plates shows substantial potential to further improve the seismic performance of ordinary CSPSWs. This study experimentally and numerically investigated the hysteretic behavior of unstiffened and stiffened CSPSWs. Cyclic quasi-static tests were conducted on four, 1/2-scale, two-story, single-bay specimens with different corrugation orientations, including two specimens with unstiffened corrugated steel plates and two specimens installed with stiffened corrugated steel plates equipped with two pairs of stiffeners. According to the hysteretic curves of different specimens, the effects of corrugation orientations and arrangement of stiffeners were revealed in terms of the skeleton curves, energy-dissipating capacity, and stiffness degradation. Then, finite element (FE) models, which were applied to gain a deeper understanding of the experimental results, were established, and validated against the test results. This study demonstrated that the arrangement of stiffeners was effective in improving the seismic performance of CSPSWs regarding the ultimate shear strength and energy-dissipating capacity, while the influence of corrugation orientations on the performance of the specimens involved in this study could be ignored.
期刊介绍:
Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following:
ground motions for analysis and design
geotechnical earthquake engineering
probabilistic and deterministic methods of dynamic analysis
experimental behaviour of structures
seismic protective systems
system identification
risk assessment
seismic code requirements
methods for earthquake-resistant design and retrofit of structures.