Laboratory and field measurements of water relations, photosynthetic parameters, and hydration traits in macrolichens in a tropical lower montane rainforest in Thailand

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Chaiwat Boonpeng, Marisa Pischom, Pawanrat Butrid, Sutatip Noikrad, Kansri Boonpragob
{"title":"Laboratory and field measurements of water relations, photosynthetic parameters, and hydration traits in macrolichens in a tropical lower montane rainforest in Thailand","authors":"Chaiwat Boonpeng, Marisa Pischom, Pawanrat Butrid, Sutatip Noikrad, Kansri Boonpragob","doi":"10.1007/s10265-024-01542-3","DOIUrl":null,"url":null,"abstract":"<p>Ecophysiological studies of lichens in tropical Asia are rare, and additional studies can increase the understanding of lichen life in this region. The main aim of this study was to observe the relationships between water availability and photosynthetic parameters, as well as hydration trait parameters, in macrolichens during the rainy and dry seasons in a tropical forest. A total of 11 lichen species growing in a lower montane rainforest in Thailand were collected and studied. The results clearly showed that the specific thallus mass (STM), net photosynthetic rate (Pn), the potential quantum yield of primary photochemistry (Fv/Fm), chlorophyll content, and carotenoid content of almost all lichens were lower in the dry season than in the rainy season. Field measurements in the dry season revealed that only the foliose chlorolichen <i>Parmotrema tinctorum</i> was metabolically active and exhibited slight carbon assimilation. In the rainy season, all lichens started their photosynthesis in the early morning, reached maximal values, declined, and ceased when the thalli desiccated. The photosynthetically active period of the lichens was approximately 2–3 h in the morning, and the activities of the cyanolichens ended approximately 30 min after the chlorolichens. The hydration trait parameters, including the STM, maximal water content (WC<sub>max</sub>), and water holding capacity (WHC), were greater in the cyanolichens. In addition, the maximal Pn (Pn<sub>max</sub>) and optimal water content (WC<sub>opt</sub>) for Pn were also greater in the cyanolichens, but the maximal Fv/Fm (Fv/Fm<sub>max</sub>) was lower. The cyanolichens compensated for their inability to use humid air to restore photosynthesis by having higher water content and storage, higher photosynthetic rates, and longer photosynthetically active periods. This study provides additional insights into lichen ecophysiology in tropical forests that can be useful for lichen conservation.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":"10 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01542-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ecophysiological studies of lichens in tropical Asia are rare, and additional studies can increase the understanding of lichen life in this region. The main aim of this study was to observe the relationships between water availability and photosynthetic parameters, as well as hydration trait parameters, in macrolichens during the rainy and dry seasons in a tropical forest. A total of 11 lichen species growing in a lower montane rainforest in Thailand were collected and studied. The results clearly showed that the specific thallus mass (STM), net photosynthetic rate (Pn), the potential quantum yield of primary photochemistry (Fv/Fm), chlorophyll content, and carotenoid content of almost all lichens were lower in the dry season than in the rainy season. Field measurements in the dry season revealed that only the foliose chlorolichen Parmotrema tinctorum was metabolically active and exhibited slight carbon assimilation. In the rainy season, all lichens started their photosynthesis in the early morning, reached maximal values, declined, and ceased when the thalli desiccated. The photosynthetically active period of the lichens was approximately 2–3 h in the morning, and the activities of the cyanolichens ended approximately 30 min after the chlorolichens. The hydration trait parameters, including the STM, maximal water content (WCmax), and water holding capacity (WHC), were greater in the cyanolichens. In addition, the maximal Pn (Pnmax) and optimal water content (WCopt) for Pn were also greater in the cyanolichens, but the maximal Fv/Fm (Fv/Fmmax) was lower. The cyanolichens compensated for their inability to use humid air to restore photosynthesis by having higher water content and storage, higher photosynthetic rates, and longer photosynthetically active periods. This study provides additional insights into lichen ecophysiology in tropical forests that can be useful for lichen conservation.

Abstract Image

实验室和实地测量泰国热带低山地雨林中大型鸟类的水分关系、光合作用参数和水合特性
对亚洲热带地衣的生态生理学研究很少见,更多的研究可以增加对该地区地衣生活的了解。本研究的主要目的是观察热带雨林雨季和旱季中大型地衣的水分供应与光合作用参数以及水合性状参数之间的关系。研究人员共采集并研究了生长在泰国低山地雨林中的 11 种地衣。结果清楚地表明,几乎所有地衣的特定苔藓质量(STM)、净光合速率(Pn)、初级光化学潜在量子产率(Fv/Fm)、叶绿素含量和类胡萝卜素含量在旱季都低于雨季。旱季的实地测量结果显示,只有叶状叶绿素地衣(Parmotrema tinctorum)新陈代谢活跃,表现出轻微的碳同化作用。在雨季,所有地衣的光合作用都在清晨开始,达到最大值后减弱,并在苔藓干燥时停止。地衣的光合作用活跃期约为清晨 2-3 小时,蓝藻的光合作用结束时间比叶绿藻晚约 30 分钟。蓝叶地衣的水合性状参数(包括 STM、最大含水量(WCmax)和持水量(WHC))更高。此外,蓝藻的最大 Pn(Pnmax)和 Pn 的最佳含水量(WCopt)也更高,但最大 Fv/Fm (Fv/Fmmax)较低。蓝藻通过较高的含水量和储水量、较高的光合速率和较长的光合作用活跃期来弥补其无法利用潮湿空气恢复光合作用的缺陷。这项研究为热带森林中的地衣生态生理学提供了更多的见解,对保护地衣很有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信