{"title":"Membrane-Targeted palGFP Predominantly Localizes to the Plasma Membrane but not to Neurosecretory Vesicle Membranes in Rat Oxytocin Neurons","authors":"Hirotaka Sakamoto, Ayumu Inutsuka","doi":"10.1267/ahc.24-00001","DOIUrl":null,"url":null,"abstract":"</p><p>Recent advances in viral vector technology, specifically using adeno-associated virus (AAV) vectors, have significantly expanded possibilities in neuronal tracing. We have utilized the Cre/loxP system in combination with AAV techniques in rats to explore the subcellular localization of palmitoylation signal-tagged GFP (palGFP) in oxytocin-producing neurosecretory neurons. A distinctive branching pattern of single axons was observed at the level of the terminals in the posterior pituitary. Despite challenges in detecting palGFP signals by fluorescent microscopy, immunoelectron microscopy demonstrated predominant localization on the plasma membrane, with a minor presence on the neurosecretory vesicle membrane. These findings suggest that membrane-anchored palGFP may undergo exocytosis, translocating from the plasma membrane to the neurosecretory vesicle membrane. In this study, we observed characteristic axon terminal structures in the posterior pituitary of oxytocin neurons. This study indicates the importance of understanding the plasma membrane-specific sorting system in neuronal membrane migration and encourages future studies on the underlying mechanisms.</p>\n<p></p>","PeriodicalId":6888,"journal":{"name":"Acta Histochemica Et Cytochemica","volume":"27 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Histochemica Et Cytochemica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.24-00001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in viral vector technology, specifically using adeno-associated virus (AAV) vectors, have significantly expanded possibilities in neuronal tracing. We have utilized the Cre/loxP system in combination with AAV techniques in rats to explore the subcellular localization of palmitoylation signal-tagged GFP (palGFP) in oxytocin-producing neurosecretory neurons. A distinctive branching pattern of single axons was observed at the level of the terminals in the posterior pituitary. Despite challenges in detecting palGFP signals by fluorescent microscopy, immunoelectron microscopy demonstrated predominant localization on the plasma membrane, with a minor presence on the neurosecretory vesicle membrane. These findings suggest that membrane-anchored palGFP may undergo exocytosis, translocating from the plasma membrane to the neurosecretory vesicle membrane. In this study, we observed characteristic axon terminal structures in the posterior pituitary of oxytocin neurons. This study indicates the importance of understanding the plasma membrane-specific sorting system in neuronal membrane migration and encourages future studies on the underlying mechanisms.
期刊介绍:
Acta Histochemica et Cytochemica is the official online journal of the Japan Society of Histochemistry and Cytochemistry. It is intended primarily for rapid publication of concise, original articles in the fields of histochemistry and cytochemistry. Manuscripts oriented towards methodological subjects that contain significant technical advances in these fields are also welcome. Manuscripts in English are accepted from investigators in any country, whether or not they are members of the Japan Society of Histochemistry and Cytochemistry. Manuscripts should be original work that has not been previously published and is not being considered for publication elsewhere, with the exception of abstracts. Manuscripts with essentially the same content as a paper that has been published or accepted, or is under consideration for publication, will not be considered. All submitted papers will be peer-reviewed by at least two referees selected by an appropriate Associate Editor. Acceptance is based on scientific significance, originality, and clarity. When required, a revised manuscript should be submitted within 3 months, otherwise it will be considered to be a new submission. The Editor-in-Chief will make all final decisions regarding acceptance.