Using Machine Learning to Forecast Market Direction with Efficient Frontier Coefficients

Nolan Alexander, William Scherer
{"title":"Using Machine Learning to Forecast Market Direction with Efficient Frontier Coefficients","authors":"Nolan Alexander, William Scherer","doi":"arxiv-2404.00825","DOIUrl":null,"url":null,"abstract":"We propose a novel method to improve estimation of asset returns for\nportfolio optimization. This approach first performs a monthly directional\nmarket forecast using an online decision tree. The decision tree is trained on\na novel set of features engineered from portfolio theory: the efficient\nfrontier functional coefficients. Efficient frontiers can be decomposed to\ntheir functional form, a square-root second-order polynomial, and the\ncoefficients of this function captures the information of all the constituents\nthat compose the market in the current time period. To make these forecasts\nactionable, these directional forecasts are integrated to a portfolio\noptimization framework using expected returns conditional on the market\nforecast as an estimate for the return vector. This conditional expectation is\ncalculated using the inverse Mills ratio, and the Capital Asset Pricing Model\nis used to translate the market forecast to individual asset forecasts. This\nnovel method outperforms baseline portfolios, as well as other feature sets\nincluding technical indicators and the Fama-French factors. To empirically\nvalidate the proposed model, we employ a set of market sector ETFs.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel method to improve estimation of asset returns for portfolio optimization. This approach first performs a monthly directional market forecast using an online decision tree. The decision tree is trained on a novel set of features engineered from portfolio theory: the efficient frontier functional coefficients. Efficient frontiers can be decomposed to their functional form, a square-root second-order polynomial, and the coefficients of this function captures the information of all the constituents that compose the market in the current time period. To make these forecasts actionable, these directional forecasts are integrated to a portfolio optimization framework using expected returns conditional on the market forecast as an estimate for the return vector. This conditional expectation is calculated using the inverse Mills ratio, and the Capital Asset Pricing Model is used to translate the market forecast to individual asset forecasts. This novel method outperforms baseline portfolios, as well as other feature sets including technical indicators and the Fama-French factors. To empirically validate the proposed model, we employ a set of market sector ETFs.
利用机器学习的有效前沿系数预测市场方向
我们提出了一种新方法来改进资产回报率的估算,以优化投资组合。这种方法首先使用在线决策树进行月度方向性市场预测。决策树是根据投资组合理论中的一组新特征训练出来的:有效前沿函数系数。有效前沿可分解为其函数形式,即平方根二阶多项式,该函数系数捕捉了当前时间段内构成市场的所有成分的信息。为了使这些预测具有可操作性,这些方向性预测被整合到一个投资组合优化框架中,使用以市场预测为条件的预期收益作为收益向量的估计值。这种条件预期使用逆米尔斯比率计算,并使用资本资产定价模型将市场预测转化为单个资产预测。这种新方法的表现优于基准投资组合以及其他特征集,包括技术指标和法马-法式因子。为了对所提出的模型进行实证验证,我们采用了一组市场行业 ETF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信