On the Pohozaev identity for the fractional p $p$ -Laplacian operator in R N $\mathbb {R}^N$

IF 0.8 3区 数学 Q2 MATHEMATICS
Vincenzo Ambrosio
{"title":"On the Pohozaev identity for the fractional \n \n p\n $p$\n -Laplacian operator in \n \n \n R\n N\n \n $\\mathbb {R}^N$","authors":"Vincenzo Ambrosio","doi":"10.1112/blms.13039","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show the existence of a nontrivial weak solution for a nonlinear problem involving the fractional <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-Laplacian operator and a Berestycki–Lions type nonlinearity. This solution satisfies a Pohozaev identity. Moreover, we prove that any sufficiently smooth solution fulfills the Pohozaev identity.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 6","pages":"1999-2013"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we show the existence of a nontrivial weak solution for a nonlinear problem involving the fractional p $p$ -Laplacian operator and a Berestycki–Lions type nonlinearity. This solution satisfies a Pohozaev identity. Moreover, we prove that any sufficiently smooth solution fulfills the Pohozaev identity.

论 RN 中分数 p-Laplacian 算子的 Pohozaev 特性
在本文中,我们证明了一个涉及分数 p$p$-Laplacian 算子和 Berestycki-Lions 型非线性的非线性问题存在一个非微不足道的弱解。这个解满足波霍扎耶夫特性。此外,我们还证明了任何足够光滑的解都满足 Pohozaev 特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信