Linear isometries of noncommutative L 0 $L_0$ -spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Aleksey Ber, Jinghao Huang, Fedor Sukochev
{"title":"Linear isometries of noncommutative \n \n \n L\n 0\n \n $L_0$\n -spaces","authors":"Aleksey Ber,&nbsp;Jinghao Huang,&nbsp;Fedor Sukochev","doi":"10.1112/blms.13044","DOIUrl":null,"url":null,"abstract":"<p>The description of (commutative and noncommutative) <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>p</mi>\n </msub>\n <annotation>$L_p$</annotation>\n </semantics></math>-isometries has been studied thoroughly since the seminal work of Banach. In the present paper, we provide a complete description for the limiting case, isometries on noncommutative <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <annotation>$L_0$</annotation>\n </semantics></math>-spaces, which extends the Banach–Stone theorem and Kadison's theorem for isometries of von Neumann algebras. The result is new even in the commutative setting.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 6","pages":"2075-2092"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The description of (commutative and noncommutative) L p $L_p$ -isometries has been studied thoroughly since the seminal work of Banach. In the present paper, we provide a complete description for the limiting case, isometries on noncommutative L 0 $L_0$ -spaces, which extends the Banach–Stone theorem and Kadison's theorem for isometries of von Neumann algebras. The result is new even in the commutative setting.

非交换 L0 空间的线性等距性
自巴纳赫的开创性工作以来,人们对(交换和非交换)Lp$L_p$-等距的描述进行了深入研究。在本文中,我们对极限情况,即非交换 L0$L_0$ 空间上的等距进行了完整的描述,扩展了巴纳赫-斯通定理和卡迪森定理对冯-诺依曼代数方程等距的描述。这一结果即使在交换环境中也是全新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信