Dynamics of strongly correlated quantum systems from an extended Singwi-Tosi-Land-Sjölander closure for the BBGKY hierarchy

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Hanno Kählert
{"title":"Dynamics of strongly correlated quantum systems from an extended Singwi-Tosi-Land-Sjölander closure for the BBGKY hierarchy","authors":"Hanno Kählert","doi":"10.1002/ctpp.202400018","DOIUrl":null,"url":null,"abstract":"<p>The BBGKY hierarchy in the Wigner representation is used with an extended Singwi-Tosi-Land-Sjölander (STLS) ansatz for the two-particle distribution function [H. Kählert, G. J. Kalman, and M. Bonitz, Phys. Rev. E 90, 011101 (2014)] to study the density response function and the dispersion relation of collective modes in a strongly coupled quantum system. It is shown that the local field correction (LFC) and the dispersion relation reduce to the results of the Quasi-Localized Charge Approximation (QLCA) in the classical limit. In the quantum case, the LFC acquires a frequency-dependence, similar to the quantum version of the STLS theory. The dispersion relation is governed by a generalization of the QLCA dynamical matrix. The results are expected to be relevant for the analysis of collective modes in quantum liquids with strong correlations.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202400018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400018","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The BBGKY hierarchy in the Wigner representation is used with an extended Singwi-Tosi-Land-Sjölander (STLS) ansatz for the two-particle distribution function [H. Kählert, G. J. Kalman, and M. Bonitz, Phys. Rev. E 90, 011101 (2014)] to study the density response function and the dispersion relation of collective modes in a strongly coupled quantum system. It is shown that the local field correction (LFC) and the dispersion relation reduce to the results of the Quasi-Localized Charge Approximation (QLCA) in the classical limit. In the quantum case, the LFC acquires a frequency-dependence, similar to the quantum version of the STLS theory. The dispersion relation is governed by a generalization of the QLCA dynamical matrix. The results are expected to be relevant for the analysis of collective modes in quantum liquids with strong correlations.

从 BBGKY 层次的扩展 Singwi-Tosi-Land-Sjölander 闭合看强相关量子系统的动力学特征
Wigner 表征中的 BBGKY 层次结构与双粒子分布函数的扩展 Singwi-Tosi-Land-Sjölander (STLS) 解析[H. Kählert, G. J. Kalman, and M. Bonitz, Phys. Rev. E 90, 011101 (2014)]一起用于研究强耦合量子系统中集体模式的密度响应函数和弥散关系。结果表明,局部场校正(LFC)和频散关系可以还原为经典极限中准局部电荷近似(QLCA)的结果。在量子情况下,LFC 与频率相关,类似于 STLS 理论的量子版本。色散关系受 QLCA 动态矩阵广义化的支配。这些结果有望用于分析具有强相关性的量子液体中的集体模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Plasma Physics
Contributions to Plasma Physics 物理-物理:流体与等离子体
CiteScore
2.90
自引率
12.50%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Aims and Scope of Contributions to Plasma Physics: Basic physics of low-temperature plasmas; Strongly correlated non-ideal plasmas; Dusty Plasmas; Plasma discharges - microplasmas, reactive, and atmospheric pressure plasmas; Plasma diagnostics; Plasma-surface interaction; Plasma technology; Plasma medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信