Rui Zhang, Jichao Lv, Yunjie Yang, Tianyu Wang, Guoxiang Liu
{"title":"Analysis of the impact of terrain factors and data fusion methods on uncertainty in intelligent landslide detection","authors":"Rui Zhang, Jichao Lv, Yunjie Yang, Tianyu Wang, Guoxiang Liu","doi":"10.1007/s10346-024-02260-6","DOIUrl":null,"url":null,"abstract":"<p>Current research on deep learning-based intelligent landslide detection modeling has focused primarily on improving and innovating model structures. However, the impact of terrain factors and data fusion methods on the prediction accuracy of models remains underexplored. To clarify the contribution of terrain information to landslide detection modeling, 1022 landslide samples compiled from Planet remote sensing images and DEM data in the Sichuan–Tibet area. We investigate the impact of digital elevation models (DEMs), remote sensing image fusion, and feature fusion techniques on the landslide prediction accuracy of models. First, we analyze the role of DEM data in landslide modeling using models such as Fast_SCNN, the SegFormer, and the Swin Transformer. Next, we use a dual-branch network for feature fusion to assess different data fusion methods. We then conduct both quantitative and qualitative analyses of the modeling uncertainty, including examining the validation set accuracy, test set confusion matrices, prediction probability distributions, segmentation results, and Grad-CAM results. The findings indicate the following: (1) model predictions become more reliable when fusing DEM data with remote sensing images, enhancing the robustness of intelligent landslide detection modeling; (2) the results obtained through dual-branch network data feature fusion lead to slightly greater accuracy than those from data channel fusion; and (3) under consistent data conditions, deep convolutional neural network models and attention mechanism models show comparable capabilities in predicting landslides. These research outcomes provide valuable references and insights for deep learning-based intelligent landslide detection.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"80 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-024-02260-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Current research on deep learning-based intelligent landslide detection modeling has focused primarily on improving and innovating model structures. However, the impact of terrain factors and data fusion methods on the prediction accuracy of models remains underexplored. To clarify the contribution of terrain information to landslide detection modeling, 1022 landslide samples compiled from Planet remote sensing images and DEM data in the Sichuan–Tibet area. We investigate the impact of digital elevation models (DEMs), remote sensing image fusion, and feature fusion techniques on the landslide prediction accuracy of models. First, we analyze the role of DEM data in landslide modeling using models such as Fast_SCNN, the SegFormer, and the Swin Transformer. Next, we use a dual-branch network for feature fusion to assess different data fusion methods. We then conduct both quantitative and qualitative analyses of the modeling uncertainty, including examining the validation set accuracy, test set confusion matrices, prediction probability distributions, segmentation results, and Grad-CAM results. The findings indicate the following: (1) model predictions become more reliable when fusing DEM data with remote sensing images, enhancing the robustness of intelligent landslide detection modeling; (2) the results obtained through dual-branch network data feature fusion lead to slightly greater accuracy than those from data channel fusion; and (3) under consistent data conditions, deep convolutional neural network models and attention mechanism models show comparable capabilities in predicting landslides. These research outcomes provide valuable references and insights for deep learning-based intelligent landslide detection.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database