Chetana G. F. Gaonkar, Pallavi P. Gaude, Ananya Das, Ramesh V. Pai
{"title":"Revisiting pairing of bosons in one-dimensional Bose–Hubbard model with three-body interaction using CMFT+DMRG method","authors":"Chetana G. F. Gaonkar, Pallavi P. Gaude, Ananya Das, Ramesh V. Pai","doi":"10.1140/epjd/s10053-024-00834-6","DOIUrl":null,"url":null,"abstract":"<p>We revisit the Bose–Hubbard model with hard-core three-body attractive interactions in one-dimension using the cluster mean-field theory with the density-matrix renormalization group. Our study focuses on the region of the phase diagram between density one Mott MI(1) and density three Mott MI(3) insulator lobes and studies the pairing of bosons. We calculate the order parameters and condensate factors corresponding to atomic and pair superfluid phases. We find no phase transition directly from MI(1) to MI(3) when the attractive three-body interaction is present. The pair superfluid dominates the region between MI(1) and MI(3) when the hopping parameter is small. As the hopping parameter increases, the model shows a phase transition to the atomic superfluid. However, the paring of bosons persists even in the atomic superfluid phases. We finally obtain the phase diagram and compare it with earlier results.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00834-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit the Bose–Hubbard model with hard-core three-body attractive interactions in one-dimension using the cluster mean-field theory with the density-matrix renormalization group. Our study focuses on the region of the phase diagram between density one Mott MI(1) and density three Mott MI(3) insulator lobes and studies the pairing of bosons. We calculate the order parameters and condensate factors corresponding to atomic and pair superfluid phases. We find no phase transition directly from MI(1) to MI(3) when the attractive three-body interaction is present. The pair superfluid dominates the region between MI(1) and MI(3) when the hopping parameter is small. As the hopping parameter increases, the model shows a phase transition to the atomic superfluid. However, the paring of bosons persists even in the atomic superfluid phases. We finally obtain the phase diagram and compare it with earlier results.
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.