Min Zhang, Jie Liu, Xun Li, Xiaoyu Zhao, Zhiqun Cheng, Tian‐Song Deng
{"title":"Versatile Approach to Self‐Assembly of Surface Modified Nanoparticles into SERS‐Active Nanoclusters","authors":"Min Zhang, Jie Liu, Xun Li, Xiaoyu Zhao, Zhiqun Cheng, Tian‐Song Deng","doi":"10.1002/ppsc.202400034","DOIUrl":null,"url":null,"abstract":"A versatile method is invented to self‐assemble gold nanoparticles (GNPs) into nanoclusters (NCs) of various morphologies. By storing the particles in toluene, a highly non‐polar solvent, under conditions that ensure particle stability, the success rate of subsequent assembly can be enhanced. Additionally, conducting particle self‐assembly at a stirring speed of 200 rpm allows the NCs to maintain a spherical shape. The relative standard deviation (RSD) of Raman spectral peaks of multiple NCs used as surface‐enhanced Raman spectroscopy (SERS) substrates is calculated to be less than 10%, effectively addressing the issue of low repeatability when using NCs as SERS substrates. Furthermore, even at an analyte concentration reduced to 10<jats:sup>−9</jats:sup> <jats:sc>m</jats:sc>, a SERS characteristic peak intensity of approximately 2 × 10<jats:sup>3</jats:sup> is measurable, demonstrating the high sensitivity of the assembled structures. Finally, by detecting SERS signals from NCs of varying sizes, the intensities of characteristic peaks tend to converge, eliminating the influence of morphology and size on SERS detection.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"38 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400034","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A versatile method is invented to self‐assemble gold nanoparticles (GNPs) into nanoclusters (NCs) of various morphologies. By storing the particles in toluene, a highly non‐polar solvent, under conditions that ensure particle stability, the success rate of subsequent assembly can be enhanced. Additionally, conducting particle self‐assembly at a stirring speed of 200 rpm allows the NCs to maintain a spherical shape. The relative standard deviation (RSD) of Raman spectral peaks of multiple NCs used as surface‐enhanced Raman spectroscopy (SERS) substrates is calculated to be less than 10%, effectively addressing the issue of low repeatability when using NCs as SERS substrates. Furthermore, even at an analyte concentration reduced to 10−9m, a SERS characteristic peak intensity of approximately 2 × 103 is measurable, demonstrating the high sensitivity of the assembled structures. Finally, by detecting SERS signals from NCs of varying sizes, the intensities of characteristic peaks tend to converge, eliminating the influence of morphology and size on SERS detection.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.