A piezoelectric-driven microneedle platform for skin disease therapy

IF 33.2 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ziyan Chen, Xin Liu, Zixi Jiang, Huayi Wu, Tao Yang, Lanyuan Peng, Lisha Wu, Zhongling Luo, Mi Zhang, Juan Su, Yan Tang, Jinmao Li, Yang Xie, Han Shan, Qibo Lin, Xiuli Wang, Xiang Chen, Hanmin Peng, Shuang Zhao, Zeyu Chen
{"title":"A piezoelectric-driven microneedle platform for skin disease therapy","authors":"Ziyan Chen, Xin Liu, Zixi Jiang, Huayi Wu, Tao Yang, Lanyuan Peng, Lisha Wu, Zhongling Luo, Mi Zhang, Juan Su, Yan Tang, Jinmao Li, Yang Xie, Han Shan, Qibo Lin, Xiuli Wang, Xiang Chen, Hanmin Peng, Shuang Zhao, Zeyu Chen","doi":"10.1016/j.xinn.2024.100621","DOIUrl":null,"url":null,"abstract":"With over a million cases detected each year, skin disease is a global public health problem that diminishes the quality of life due to its difficulty to eradicate, propensity for recurrence, and potential for post-treatment scarring. Photodynamic therapy (PDT) is a treatment with minimal invasiveness or scarring and few side effects, making it well tolerated by patients. However, this treatment requires further research and development to improve its effective clinical use. Here, a piezoelectric-driven microneedle (PDMN) platform that achieves high efficiency, safety, and non-invasiveness for enhanced PDT is proposed. This platform induces deep tissue cavitation, increasing the level of protoporphyrin IX and significantly enhancing drug penetration. A clinical trial involving 25 patients with skin disease was conducted to investigate the timeliness and efficacy of PDMN-assisted PDT (PDMN-PDT). Our findings suggested that PDMN-PDT boosted treatment effectiveness and reduced the required incubation time and drug concentration by 25% and 50%, respectively, without any anesthesia compared to traditional PDT. These findings suggest that PDMN-PDT is a safe and minimally invasive approach for skin disease treatment, which may improve the therapeutic efficacy of topical medications and enable translation for future clinical applications.","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"50 1","pages":""},"PeriodicalIF":33.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2024.100621","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With over a million cases detected each year, skin disease is a global public health problem that diminishes the quality of life due to its difficulty to eradicate, propensity for recurrence, and potential for post-treatment scarring. Photodynamic therapy (PDT) is a treatment with minimal invasiveness or scarring and few side effects, making it well tolerated by patients. However, this treatment requires further research and development to improve its effective clinical use. Here, a piezoelectric-driven microneedle (PDMN) platform that achieves high efficiency, safety, and non-invasiveness for enhanced PDT is proposed. This platform induces deep tissue cavitation, increasing the level of protoporphyrin IX and significantly enhancing drug penetration. A clinical trial involving 25 patients with skin disease was conducted to investigate the timeliness and efficacy of PDMN-assisted PDT (PDMN-PDT). Our findings suggested that PDMN-PDT boosted treatment effectiveness and reduced the required incubation time and drug concentration by 25% and 50%, respectively, without any anesthesia compared to traditional PDT. These findings suggest that PDMN-PDT is a safe and minimally invasive approach for skin disease treatment, which may improve the therapeutic efficacy of topical medications and enable translation for future clinical applications.

Abstract Image

用于皮肤病治疗的压电驱动微针平台
皮肤病是一个全球性的公共卫生问题,每年发现的病例超过一百万例,由于难以根治、容易复发以及治疗后可能留下疤痕,降低了人们的生活质量。光动力疗法(PDT)是一种微创或瘢痕治疗方法,副作用小,患者耐受性好。然而,这种疗法还需要进一步研究和开发,以提高其临床应用的有效性。本文提出了一种压电驱动微针(PDMN)平台,可实现高效、安全和无创的增强型光导疗法。该平台可诱导深层组织空化,提高原卟啉 IX 的含量,显著增强药物渗透。为了研究 PDMN 辅助光动力疗法(PDMN-PDT)的及时性和有效性,我们对 25 名皮肤病患者进行了临床试验。我们的研究结果表明,与传统的光导疗法相比,PDMN-光导疗法提高了治疗效果,并将所需的孵育时间和药物浓度分别缩短了 25% 和 50%,而且无需任何麻醉。这些研究结果表明,PDMN-PDT 是一种安全、微创的皮肤病治疗方法,可提高外用药物的疗效,并可转化为未来的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信