Improving the Efficiency of Water Splitting and Oxygen Reduction Via Single-Atom Anchoring on Graphyne Support

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shamraiz Hussain Talib, Beenish Bashir, Muhammad Ajmal Khan, Babar Ali, Sharmarke Mohamed, Ahsanulhaq Qurashi, Jun Li
{"title":"Improving the Efficiency of Water Splitting and Oxygen Reduction Via Single-Atom Anchoring on Graphyne Support","authors":"Shamraiz Hussain Talib,&nbsp;Beenish Bashir,&nbsp;Muhammad Ajmal Khan,&nbsp;Babar Ali,&nbsp;Sharmarke Mohamed,&nbsp;Ahsanulhaq Qurashi,&nbsp;Jun Li","doi":"10.1002/eem2.12723","DOIUrl":null,"url":null,"abstract":"<p>Single-atom catalysts (SACs) have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this study, we investigate a range of single-transition metal (STM<sub>1</sub> = Sc<sub>1</sub>, Ti<sub>1</sub>, V<sub>1</sub>, Cr<sub>1</sub>, Mn<sub>1</sub>, Fe<sub>1</sub>, Co<sub>1</sub>, Ni<sub>1</sub>, Cu<sub>1</sub>, Zr<sub>1</sub>, Nb<sub>1</sub>, Mo<sub>1</sub>, Ru<sub>1</sub>, Rh<sub>1</sub>, Pd<sub>1</sub>, Ag<sub>1</sub>, W<sub>1</sub>, Re<sub>1</sub>, Os<sub>1</sub>, Ir<sub>1</sub>, Pt<sub>1</sub>, and Au<sub>1</sub>) atoms supported on graphyne (GY) surface for HER/OER and ORR using first-principle calculations. Ab initio molecular dynamics (AIMD) simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface. The exceptional stability of all supported STM<sub>1</sub> atoms within the H1 cavity of the GY surface exists in an isolated form, facilitating the uniform distribution and proper arrangement of single atoms on GY. In particular, Sc<sub>1</sub>, Co<sub>1</sub>, Fe<sub>1</sub>, and Au<sub>1</sub>/GY demonstrate promising catalytic efficiency in the HER due to idealistic ΔG<sub>H*</sub> values <i>via</i> the Volmer-Heyrovsky pathway. Notably, Sc<sub>1</sub> and Au<sub>1</sub>/GY exhibit superior HER catalytic activity compared to other studied catalysts. Co<sub>1</sub>/GY catalyst exhibits higher selectivity and activity for the OER, with an overpotential (0.46 V) comparable to MoC<sub>2</sub>, IrO<sub>2</sub>, and RuO<sub>2</sub>. Also, Rh<sub>1</sub> and Co<sub>1</sub>/GY SACs exhibited promising electrocatalysts for the ORR, with an overpotential of 0.36 and 0.46 V, respectively. Therefore, Co<sub>1</sub>/GY is a versatile electrocatalyst for metal-air batteries and water-splitting. This study further incorporates computational analysis of the kinetic potential energy barriers of Co<sub>1</sub> and Rh<sub>1</sub> in the OER and ORR. A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps. We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM<sub>1</sub>/GY and introduce a key descriptor. This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 5","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12723","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12723","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom catalysts (SACs) have received significant interest for optimizing metal atom utilization and superior catalytic performance in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this study, we investigate a range of single-transition metal (STM1 = Sc1, Ti1, V1, Cr1, Mn1, Fe1, Co1, Ni1, Cu1, Zr1, Nb1, Mo1, Ru1, Rh1, Pd1, Ag1, W1, Re1, Os1, Ir1, Pt1, and Au1) atoms supported on graphyne (GY) surface for HER/OER and ORR using first-principle calculations. Ab initio molecular dynamics (AIMD) simulations and phonon dispersion spectra reveal the dynamic and thermal stabilities of the GY surface. The exceptional stability of all supported STM1 atoms within the H1 cavity of the GY surface exists in an isolated form, facilitating the uniform distribution and proper arrangement of single atoms on GY. In particular, Sc1, Co1, Fe1, and Au1/GY demonstrate promising catalytic efficiency in the HER due to idealistic ΔGH* values via the Volmer-Heyrovsky pathway. Notably, Sc1 and Au1/GY exhibit superior HER catalytic activity compared to other studied catalysts. Co1/GY catalyst exhibits higher selectivity and activity for the OER, with an overpotential (0.46 V) comparable to MoC2, IrO2, and RuO2. Also, Rh1 and Co1/GY SACs exhibited promising electrocatalysts for the ORR, with an overpotential of 0.36 and 0.46 V, respectively. Therefore, Co1/GY is a versatile electrocatalyst for metal-air batteries and water-splitting. This study further incorporates computational analysis of the kinetic potential energy barriers of Co1 and Rh1 in the OER and ORR. A strong correlation is found between the estimated kinetic activation barriers for the thermodynamic outcomes and all proton-coupled electron transfer steps. We establish a relation for the Gibbs free energy of intermediates to understand the mechanism of SACs supported on STM1/GY and introduce a key descriptor. This study highlights GY as a favorable single-atom support for designing highly active and cost-effective versatile electrocatalysts for practical applications.

Abstract Image

Abstract Image

通过在石墨支持物上锚定单原子提高水分离和氧还原的效率
单原子催化剂 (SAC) 在氢进化反应 (HER)、氧进化反应 (OER) 和氧还原反应 (ORR) 中可优化金属原子的利用率并获得优异的催化性能,因此受到了广泛关注。在本研究中,我们利用第一性原理计算,研究了石墨烯(GY)表面支持的一系列单过渡金属(STM1 = Sc1、Ti1、V1、Cr1、Mn1、Fe1、Co1、Ni1、Cu1、Zr1、Nb1、Mo1、Ru1、Rh1、Pd1、Ag1、W1、Re1、Os1、Ir1、Pt1 和 Au1)原子在氢进化/氧进化反应和氧还原反应中的催化性能。Ab initio 分子动力学(AIMD)模拟和声子频散谱揭示了 GY 表面的动态和热稳定性。在 GY 表面的 H1 空腔中,所有受支持的 STM1 原子都以孤立的形式存在,这使得单个原子在 GY 上的均匀分布和合理排列变得更加容易。其中,Sc1、Co1、Fe1 和 Au1/GY 通过 Volmer-Heyrovsky 途径在 HER 中表现出理想的 ΔGH* 值,因而具有良好的催化效率。值得注意的是,与所研究的其他催化剂相比,Sc1 和 Au1/GY 表现出更高的 HER 催化活性。Co1/GY 催化剂对 OER 具有更高的选择性和活性,过电位(0.46 V)与 MoC2、IrO2 和 RuO2 相当。此外,Rh1 和 Co1/GY SAC 在 ORR 中也表现出良好的电催化剂性能,过电位分别为 0.36 V 和 0.46 V。因此,Co1/GY 是一种适用于金属-空气电池和水分离的多功能电催化剂。本研究进一步结合计算分析了 Co1 和 Rh1 在 OER 和 ORR 中的动能势垒。研究发现,热力学结果和所有质子耦合电子转移步骤的估计动能活化势垒之间存在很强的相关性。我们建立了中间产物的吉布斯自由能关系,以了解 STM1/GY 支持的 SAC 的机理,并引入了一个关键描述因子。这项研究强调了 GY 是一种有利的单原子支持物,可用于设计高活性、高成本效益的多功能电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信