CO2 Capture in Liquid Phase and Room–Temperature Release and Concentration Using Mechanical Power

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aimin Li, Yuanchu Liu, Ke Luo, Qing He
{"title":"CO2 Capture in Liquid Phase and Room–Temperature Release and Concentration Using Mechanical Power","authors":"Aimin Li, Yuanchu Liu, Ke Luo, Qing He","doi":"10.31635/ccschem.024.202404292","DOIUrl":null,"url":null,"abstract":"Development of advanced materials with high CO<sub>2</sub> capture capacity and, <i>inter alia</i>, superior regenerability with low energy consumption (low–temperature CO<sub>2</sub> release) remains highly desired yet challenging. Herein, we firstly report the precipitation–involved CO<sub>2</sub> capture from ultradilute sources (e.g., exhaled gas and indoor air) and the reversible room–temperature CO<sub>2</sub> release accelerated by mechanical power using a covalent organic superphane cage. This superphane based operating system enables CO<sub>2</sub> in ultradilute gas (&lt; 6%) to be concentrated up to 83%. As inferred from the control experiments and theoretical calculations, this proof–of–concept CO<sub>2</sub> capture and concentration system with mechanical power–triggered CO<sub>2</sub> release by the discrete organic cage could be rationalized by the formation of a six–membered ring transition state with relatively low energy barrier during the process of the adsorption and desorption of CO<sub>2</sub> on the cage surface, along with the precipitation involved phase change.\n<figure><img alt=\"\" data-lg-src=\"/cms/asset/7e6328b1-9517-4a75-9049-1c025baa2278/keyimage.jpg\" data-src=\"/cms/asset/41fb7540-b7d1-4c94-b3bb-760edc1b5ab8/keyimage.jpg\" src=\"/specs/ux3/releasedAssets/images/loader-7e60691fbe777356dc81ff6d223a82a6.gif\"/><ul>\n<li>Download figure</li>\n<li>Download PowerPoint</li>\n</ul>\n</figure>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202404292","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Development of advanced materials with high CO2 capture capacity and, inter alia, superior regenerability with low energy consumption (low–temperature CO2 release) remains highly desired yet challenging. Herein, we firstly report the precipitation–involved CO2 capture from ultradilute sources (e.g., exhaled gas and indoor air) and the reversible room–temperature CO2 release accelerated by mechanical power using a covalent organic superphane cage. This superphane based operating system enables CO2 in ultradilute gas (< 6%) to be concentrated up to 83%. As inferred from the control experiments and theoretical calculations, this proof–of–concept CO2 capture and concentration system with mechanical power–triggered CO2 release by the discrete organic cage could be rationalized by the formation of a six–membered ring transition state with relatively low energy barrier during the process of the adsorption and desorption of CO2 on the cage surface, along with the precipitation involved phase change.
Abstract Image
  • Download figure
  • Download PowerPoint
液相二氧化碳捕获以及利用机械动力进行室温释放和浓缩
开发具有高二氧化碳捕集能力,以及低能耗(低温二氧化碳释放)、可再生性强等特点的先进材料仍然是人们的强烈愿望,但也是一项挑战。在此,我们首次报道了利用共价有机超烷笼,从超稀释源(如呼出气体和室内空气)中捕获沉淀参与的二氧化碳,并通过机械动力加速可逆的室温二氧化碳释放。这种基于超薄膜的操作系统可将超稀薄气体(6%)中的二氧化碳浓缩至 83%。根据对照实验和理论计算推断,这种概念验证型二氧化碳捕获和浓缩系统由离散有机笼通过机械动力触发二氧化碳释放,其合理之处在于二氧化碳在笼子表面吸附和解吸的过程中形成了能垒相对较低的六元环过渡态,并伴随着沉淀引起的相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CCS Chemistry
CCS Chemistry Chemistry-General Chemistry
CiteScore
13.60
自引率
13.40%
发文量
475
审稿时长
10 weeks
期刊介绍: CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信