Heterojunction structure of cobalt sulfide cathodes for high-performance magnesium-ion batteries

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-05-01 DOI:10.1016/j.matt.2024.03.008
Jianbiao Wang , Tanmay Ghosh , Zhengyu Ju , Man-Fai Ng , Gang Wu , Gaoliang Yang , Xiaofei Zhang , Lei Zhang , Albertus D. Handoko , Sonal Kumar , Wutthikrai Busayaporn , Dechmongkhon Kaewsuwan , Changyun Jiang , Mingdeng Wei , Guihua Yu , Zhi Wei Seh
{"title":"Heterojunction structure of cobalt sulfide cathodes for high-performance magnesium-ion batteries","authors":"Jianbiao Wang ,&nbsp;Tanmay Ghosh ,&nbsp;Zhengyu Ju ,&nbsp;Man-Fai Ng ,&nbsp;Gang Wu ,&nbsp;Gaoliang Yang ,&nbsp;Xiaofei Zhang ,&nbsp;Lei Zhang ,&nbsp;Albertus D. Handoko ,&nbsp;Sonal Kumar ,&nbsp;Wutthikrai Busayaporn ,&nbsp;Dechmongkhon Kaewsuwan ,&nbsp;Changyun Jiang ,&nbsp;Mingdeng Wei ,&nbsp;Guihua Yu ,&nbsp;Zhi Wei Seh","doi":"10.1016/j.matt.2024.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal chalcogenides (TMCs) with 3d orbitals have been intensively studied for use as cathodes in magnesium-ion batteries. However, their poor electronic conductivities and sluggish electrochemical kinetics severely restrict their electrochemical performance, preventing wide applicability for these materials. Here, we propose a heterointerface structure of cobalt sulfide (Co<sub>3</sub>S<sub>4</sub>/CoS<sub>2</sub>) hollow nanospheres to enable built-in electric fields generated in heterointerfaces, as verified in density functional theory, finite-element simulations, and <em>ab initio</em> molecular dynamics results. Compared to other TMCs, our cathode exhibited a substantial capacity of 597 mAh g<sup>−1</sup> after 120 cycles at 50 mA g<sup>−1</sup>. When evaluated in a pouch cell, the electrode can sustain 100 deep cycles at 40 mA g<sup>−1</sup> with an energy density of 203 Wh kg<sup>−1</sup> that displays potential for practical applications. Finally, rational heterostructure engineering of transition-metal-based sulfides provides insights into developing cathodes for high-performance sustainable Mg batteries.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524001152","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal chalcogenides (TMCs) with 3d orbitals have been intensively studied for use as cathodes in magnesium-ion batteries. However, their poor electronic conductivities and sluggish electrochemical kinetics severely restrict their electrochemical performance, preventing wide applicability for these materials. Here, we propose a heterointerface structure of cobalt sulfide (Co3S4/CoS2) hollow nanospheres to enable built-in electric fields generated in heterointerfaces, as verified in density functional theory, finite-element simulations, and ab initio molecular dynamics results. Compared to other TMCs, our cathode exhibited a substantial capacity of 597 mAh g−1 after 120 cycles at 50 mA g−1. When evaluated in a pouch cell, the electrode can sustain 100 deep cycles at 40 mA g−1 with an energy density of 203 Wh kg−1 that displays potential for practical applications. Finally, rational heterostructure engineering of transition-metal-based sulfides provides insights into developing cathodes for high-performance sustainable Mg batteries.

Abstract Image

Abstract Image

用于高性能镁离子电池的硫化钴阴极的异质结结构
为了在镁离子电池中用作阴极,人们对具有 3d 轨道的过渡金属瑀(TMCs)进行了深入研究。然而,它们较差的电子传导性和迟缓的电化学动力学严重限制了它们的电化学性能,阻碍了这些材料的广泛应用。在此,我们提出了一种硫化钴(Co3S4/CoS2)空心纳米球的异质界面结构,以实现异质界面中产生的内置电场,密度泛函理论、有限元模拟和 ab initio 分子动力学结果都验证了这一点。与其他 TMC 相比,我们的阴极在 50 mA g-1 的条件下循环 120 次后显示出 597 mAh g-1 的巨大容量。在袋式电池中进行评估时,该电极可以在 40 mA g-1 的条件下维持 100 次深度循环,能量密度为 203 Wh kg-1,具有实际应用的潜力。最后,过渡金属硫化物的合理异质结构工程为开发高性能可持续镁电池阴极提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信