{"title":"Effect of Ball Milling Time on Microstructure and Hydrogen Storage Properties of Nd5Mg41Ni Alloy","authors":"Zeming Yuan, Chenxu Liu, Xiaoming Li, Yongqi Sui, Zhonggang Han, Tingting Zhai, Dianchen Feng, Yanghuan Zhang","doi":"10.1007/s40195-024-01693-1","DOIUrl":null,"url":null,"abstract":"<div><p>Mg-based alloys must be dehydrogenated at high pressure and temperatures, limiting their practical application. In this paper, Nd<sub>5</sub>Mg<sub>41</sub>Ni alloy was prepared by vacuum melting, and the as-cast alloy was ball milled for 5 h, 10 h, 15 h, and 20 h. The effect of ball milling time on the microstructure and hydrogen storage properties of the alloy was systematically studied. The alloy comprises Nd<sub>5</sub>Mg<sub>41</sub>, NdMg<sub>12</sub>, NdMg<sub>3,</sub> and Mg<sub>2</sub>Ni phases. The Nd<sub>5</sub>Mg<sub>41</sub>Ni alloy milling for 10 h can reach 95% of the saturated hydrogen absorption at 553 K by 40 s, and the alloy can desorb hydrogen only by 20 min. The dehydrogenation activation energy is only 99.9 kJ/mol H<sub>2</sub>. Ball milling makes the alloy produce many nanocrystalline and amorphous structures. The nano-grain boundary provides a channel for the diffusion of hydrogen atoms, and the high energy at the grain boundary provides energy for the phase deformation nucleus. Ball milling leads to the refinement of alloy particles and shortens the diffusion distance of hydrogen atoms to the interior of alloy particles. Defects such as twins and dislocations generated by milling provide energy for the phase deformation nucleus during the hydrogen absorption and desorption.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 7","pages":"1201 - 1214"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01693-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Mg-based alloys must be dehydrogenated at high pressure and temperatures, limiting their practical application. In this paper, Nd5Mg41Ni alloy was prepared by vacuum melting, and the as-cast alloy was ball milled for 5 h, 10 h, 15 h, and 20 h. The effect of ball milling time on the microstructure and hydrogen storage properties of the alloy was systematically studied. The alloy comprises Nd5Mg41, NdMg12, NdMg3, and Mg2Ni phases. The Nd5Mg41Ni alloy milling for 10 h can reach 95% of the saturated hydrogen absorption at 553 K by 40 s, and the alloy can desorb hydrogen only by 20 min. The dehydrogenation activation energy is only 99.9 kJ/mol H2. Ball milling makes the alloy produce many nanocrystalline and amorphous structures. The nano-grain boundary provides a channel for the diffusion of hydrogen atoms, and the high energy at the grain boundary provides energy for the phase deformation nucleus. Ball milling leads to the refinement of alloy particles and shortens the diffusion distance of hydrogen atoms to the interior of alloy particles. Defects such as twins and dislocations generated by milling provide energy for the phase deformation nucleus during the hydrogen absorption and desorption.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.