Yongjian Wei, Ying Li, Yunfei Xu, Yinghui Sun, Tong Xu, Haiou Liang, Jie Bai
{"title":"Crystal facet-dependent CO2 cycloaddition to epoxides over ZnO catalysts","authors":"Yongjian Wei, Ying Li, Yunfei Xu, Yinghui Sun, Tong Xu, Haiou Liang, Jie Bai","doi":"10.1007/s11705-024-2412-6","DOIUrl":null,"url":null,"abstract":"<div><p>With regard to green chemistry and sustainable development, the fixation of CO<sub>2</sub> into epoxides to form cyclic carbonates is an attractive and promising pathway for CO<sub>2</sub> utilization. Metal oxides, renowned as promising eco-friendly catalysts for industrial production, are often undervalued in terms of their impact on the CO<sub>2</sub> addition reaction. In this work, we successfully developed ZnO nanoplates with (002) surfaces and ZnO nanorods with (100) surfaces via morphology-oriented regulation to explore the effect of crystal faces on CO<sub>2</sub> cycloaddition. The quantitative data obtained from electron paramagnetic resonance spectroscopy indicated that the concentration of oxygen vacancies on the ZnO nanoplate surfaces was more than twice that on the ZnO nanorod surfaces. Density functional theory calculations suggested that the (002) surfaces have lower adsorption energies for CO<sub>2</sub> and epichlorohydrin than the (100) surfaces. As a result, the yield of cyclochloropropene carbonate on the ZnO nanoplates (64.7%) was much greater than that on the ZnO nanorods (42.3%). Further evaluation of the reused catalysts revealed that the decrease in the oxygen vacancy concentration was the primary factor contributing to the decrease in catalytic performance. Based on these findings, a possible catalytic mechanism for CO<sub>2</sub> cycloaddition with epichlorohydrin was proposed. This work provides a new idea for the controllable preparation of high-performance ZnO catalysts for the synthesis of cyclic carbonates from CO<sub>2</sub> and epoxides.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2412-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With regard to green chemistry and sustainable development, the fixation of CO2 into epoxides to form cyclic carbonates is an attractive and promising pathway for CO2 utilization. Metal oxides, renowned as promising eco-friendly catalysts for industrial production, are often undervalued in terms of their impact on the CO2 addition reaction. In this work, we successfully developed ZnO nanoplates with (002) surfaces and ZnO nanorods with (100) surfaces via morphology-oriented regulation to explore the effect of crystal faces on CO2 cycloaddition. The quantitative data obtained from electron paramagnetic resonance spectroscopy indicated that the concentration of oxygen vacancies on the ZnO nanoplate surfaces was more than twice that on the ZnO nanorod surfaces. Density functional theory calculations suggested that the (002) surfaces have lower adsorption energies for CO2 and epichlorohydrin than the (100) surfaces. As a result, the yield of cyclochloropropene carbonate on the ZnO nanoplates (64.7%) was much greater than that on the ZnO nanorods (42.3%). Further evaluation of the reused catalysts revealed that the decrease in the oxygen vacancy concentration was the primary factor contributing to the decrease in catalytic performance. Based on these findings, a possible catalytic mechanism for CO2 cycloaddition with epichlorohydrin was proposed. This work provides a new idea for the controllable preparation of high-performance ZnO catalysts for the synthesis of cyclic carbonates from CO2 and epoxides.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.