Shoreline delineation and change analysis in response to sea level rise and coastal bathymetry along the coast of Visakhapatnam, India using high-resolution optical imagery

IF 2.3 4区 地球科学
Ibrahim Shaik, Mohammed Suhail, Pullaiahgari Venkata Nagamani
{"title":"Shoreline delineation and change analysis in response to sea level rise and coastal bathymetry along the coast of Visakhapatnam, India using high-resolution optical imagery","authors":"Ibrahim Shaik,&nbsp;Mohammed Suhail,&nbsp;Pullaiahgari Venkata Nagamani","doi":"10.1007/s11600-024-01341-3","DOIUrl":null,"url":null,"abstract":"<div><p>Coastal morphology is persistently changing in structure and environment because of natural and anthropogenic effects. Consequently, determining the spatiotemporal variability of coastal areas has become a significant source of concern. The study focuses on automatic delineation of the shoreline using edge detection algorithms; quantification of the morphological changes using a digital shoreline analysis system (DSAS); and retrieval of coastal bathymetry using linear wave dispersion relation from optical imagery for the period 2005–2020. The Canny algorithm shows efficiency in detecting shoreline precisely (95.6%). The highest erosions for net shoreline movement (NSM) are −31.71 m and −50.43 m/yr for end point rate (EPR) during 2014–2017, whereas the maximum accretions for NSM are 25.37 m and 8.64 m/yr for EPR during 2011–2014. The linear regression rate (LRR) and weighted linear regression (WLR) measure shoreline shift over a 15-year period, with the maximum rates of accretion and erosion being 1.01 m/yr and −1.02 m/yr, respectively. Shoreline prediction was carried out using the Kalman filter model for the year 2021 and was concurrently validated with field DGPS measurements. The retrieved bathymetry over the study area agrees with in situ bathymetry data with a mean bias error (MBE) of 0.39, a correlation coefficient (<i>r</i>) of 0.821, and a coefficient of determination (<i>R</i><sup>2</sup>) of 0.742. The study also illustrates the effects of changes in mean sea level (MSL) height and coastal bathymetry on coastal morphology. Coastal bathymetry shows an inverse relationship (<i>r</i> = −0.765) with NSM, whereas MSL height shows a positive relationship with NSM (<i>r</i> = 0.403).</p></div>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"72 6","pages":"4453 - 4472"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11600-024-01341-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coastal morphology is persistently changing in structure and environment because of natural and anthropogenic effects. Consequently, determining the spatiotemporal variability of coastal areas has become a significant source of concern. The study focuses on automatic delineation of the shoreline using edge detection algorithms; quantification of the morphological changes using a digital shoreline analysis system (DSAS); and retrieval of coastal bathymetry using linear wave dispersion relation from optical imagery for the period 2005–2020. The Canny algorithm shows efficiency in detecting shoreline precisely (95.6%). The highest erosions for net shoreline movement (NSM) are −31.71 m and −50.43 m/yr for end point rate (EPR) during 2014–2017, whereas the maximum accretions for NSM are 25.37 m and 8.64 m/yr for EPR during 2011–2014. The linear regression rate (LRR) and weighted linear regression (WLR) measure shoreline shift over a 15-year period, with the maximum rates of accretion and erosion being 1.01 m/yr and −1.02 m/yr, respectively. Shoreline prediction was carried out using the Kalman filter model for the year 2021 and was concurrently validated with field DGPS measurements. The retrieved bathymetry over the study area agrees with in situ bathymetry data with a mean bias error (MBE) of 0.39, a correlation coefficient (r) of 0.821, and a coefficient of determination (R2) of 0.742. The study also illustrates the effects of changes in mean sea level (MSL) height and coastal bathymetry on coastal morphology. Coastal bathymetry shows an inverse relationship (r = −0.765) with NSM, whereas MSL height shows a positive relationship with NSM (r = 0.403).

Abstract Image

Abstract Image

利用高分辨率光学图像对印度维萨卡帕特南沿岸的海岸线划定和变化分析,以应对海平面上升和海岸测深问题
由于自然和人类活动的影响,沿岸形态的结构和环境不断发生变化。因此,确定沿海地区的时空变化已成为人们关注的一个重要问题。这项研究的重点是利用边缘检测算法自动划定海岸线;利用数字海岸线分析系统 (DSAS)量化形态变化;以及利用光学图像中的线性波色散关系检索 2005-2020 年期间的沿岸水深。Canny 算法在精确探测海岸线方面显示出高效率(95.6%)。在 2014-2017 年期间,净海岸线移动(NSM)的最大侵蚀量为-31.71 米/年,终点速率(EPR)为-50.43 米/年;而在 2011-2014 年期间,净海岸线移动(NSM)的最大增量为 25.37 米/年,终点速率(EPR)为 8.64 米/年。线性回归率(LRR)和加权线性回归率(WLR)测量的是 15 年内的海岸线移动,最大增生率和侵蚀率分别为 1.01 米/年和-1.02 米/年。使用卡尔曼滤波模型对 2021 年的海岸线进行了预测,并同时与实地 DGPS 测量结果进行了验证。研究区域的测深结果与现场测深数据一致,平均偏差误差 (MBE) 为 0.39,相关系数 (r) 为 0.821,判定系数 (R2) 为 0.742。该研究还说明了平均海平面(MSL)高度和沿岸水深变化对沿岸形态的影响。沿岸水深与近海海面呈反比关系 (r = -0.765),而平均海平面高度与近海海面呈正比关系 (r = 0.403)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geophysica
Acta Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.80
自引率
13.00%
发文量
251
期刊介绍: Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信