Discriminant and integral basis of number fields defined by exponential Taylor polynomials

IF 0.7 3区 数学 Q2 MATHEMATICS
Ankita Jindal, Sudesh K. Khanduja
{"title":"Discriminant and integral basis of number fields defined by exponential Taylor polynomials","authors":"Ankita Jindal, Sudesh K. Khanduja","doi":"10.1017/s0013091524000105","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000105_inline1.png\" /> <jats:tex-math>$K_n=\\mathbb{Q}(\\alpha_n)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a family of algebraic number fields where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000105_inline2.png\" /> <jats:tex-math>$\\alpha_n\\in \\mathbb{C}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a root of the <jats:italic>n</jats:italic>th exponential Taylor polynomial <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000105_inline3.png\" /> <jats:tex-math>$\\frac{x^n}{n!}+ \\frac{x^{n-1}}{(n-1)!}+ \\cdots +\\frac{x^2}{2!}+\\frac{x}{1!}+1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S0013091524000105_inline4.png\" /> <jats:tex-math>$n\\in \\mathbb{N}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we give a formula for the exact power of any prime <jats:italic>p</jats:italic> dividing the discriminant of <jats:italic>K<jats:sub>n</jats:sub></jats:italic> in terms of the <jats:italic>p</jats:italic>-adic expansion of <jats:italic>n</jats:italic>. An explicit <jats:italic>p</jats:italic>-integral basis of <jats:italic>K<jats:sub>n</jats:sub></jats:italic> is also given for each prime <jats:italic>p</jats:italic>. These <jats:italic>p</jats:italic>-integral bases quickly lead to the construction of an integral basis of <jats:italic>K<jats:sub>n</jats:sub></jats:italic>.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"55 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $K_n=\mathbb{Q}(\alpha_n)$ be a family of algebraic number fields where $\alpha_n\in \mathbb{C}$ is a root of the nth exponential Taylor polynomial $\frac{x^n}{n!}+ \frac{x^{n-1}}{(n-1)!}+ \cdots +\frac{x^2}{2!}+\frac{x}{1!}+1$ , $n\in \mathbb{N}$ . In this paper, we give a formula for the exact power of any prime p dividing the discriminant of Kn in terms of the p-adic expansion of n. An explicit p-integral basis of Kn is also given for each prime p. These p-integral bases quickly lead to the construction of an integral basis of Kn.
指数泰勒多项式定义的数域的判别和积分基础
让 $K_n=\mathbb{Q}(\alpha_n)$ 是一个代数数域族,其中 $\alpha_n\in \mathbb{C}$ 是第 n 次指数泰勒多项式 $\frac{x^n}{n!}+ (frac{x^{n-1}}{(n-1)!}+ (cdots +\frac{x^2}{2!}+\frac{x}{1!}+1$ , $n\in \mathbb{N}$。在本文中,我们用 n 的 p-adic 扩展给出了除以 Kn 的判别式的任何素数 p 的精确幂的公式。这些 p 积分基很快就能导致 Kn 积分基的构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信