{"title":"Normalized solutions to the quasilinear Schrödinger equations with combined nonlinearities","authors":"Anmin Mao, Shuyao Lu","doi":"10.1017/s001309152400004x","DOIUrl":null,"url":null,"abstract":"We consider the radially symmetric positive solutions to quasilinear problem <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_eqnU1.png\" /> <jats:tex-math>\\begin{equation*}-\\triangle u-u\\triangle u^{2}+\\lambda u=f(u),\\quad{\\rm in} \\ \\mathbb{R}^{N},\\end{equation*}</jats:tex-math> </jats:alternatives> </jats:disp-formula> having prescribed mass <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_inline1.png\" /> <jats:tex-math>$\\int_{\\mathbb{R}^{N}}|u|^2 =a^2,$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>a</jats:italic> > 0 is a constant, <jats:italic>λ</jats:italic> appears as a Lagrange multiplier. We focus on the pure <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-supercritical case and combination case of <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-subcritical and <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-supercritical nonlinearities <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_eqnU2.png\" /> <jats:tex-math>\\begin{equation*}f(u)=\\tau |u|^{q-2}u+|u|^{p-2}u,\\quad \\tau \\gt 0,\\qquad{\\rm where}\\ \\ 2 \\lt q \\lt 2+\\frac{4}{N} \\ {\\rm and} \\quad \\ p \\gt \\bar{p},\\end{equation*}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_inline2.png\" /> <jats:tex-math>$\\bar{p}:=4+\\frac{4}{N}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-critical exponent. Our work extends and develops some recent results in the literature.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"70 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001309152400004x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the radially symmetric positive solutions to quasilinear problem \begin{equation*}-\triangle u-u\triangle u^{2}+\lambda u=f(u),\quad{\rm in} \ \mathbb{R}^{N},\end{equation*} having prescribed mass $\int_{\mathbb{R}^{N}}|u|^2 =a^2,$ where a > 0 is a constant, λ appears as a Lagrange multiplier. We focus on the pure L2-supercritical case and combination case of L2-subcritical and L2-supercritical nonlinearities \begin{equation*}f(u)=\tau |u|^{q-2}u+|u|^{p-2}u,\quad \tau \gt 0,\qquad{\rm where}\ \ 2 \lt q \lt 2+\frac{4}{N} \ {\rm and} \quad \ p \gt \bar{p},\end{equation*} where $\bar{p}:=4+\frac{4}{N}$ is the L2-critical exponent. Our work extends and develops some recent results in the literature.
期刊介绍:
The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.