Normalized solutions to the quasilinear Schrödinger equations with combined nonlinearities

IF 0.7 3区 数学 Q2 MATHEMATICS
Anmin Mao, Shuyao Lu
{"title":"Normalized solutions to the quasilinear Schrödinger equations with combined nonlinearities","authors":"Anmin Mao, Shuyao Lu","doi":"10.1017/s001309152400004x","DOIUrl":null,"url":null,"abstract":"We consider the radially symmetric positive solutions to quasilinear problem <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_eqnU1.png\" /> <jats:tex-math>\\begin{equation*}-\\triangle u-u\\triangle u^{2}+\\lambda u=f(u),\\quad{\\rm in} \\ \\mathbb{R}^{N},\\end{equation*}</jats:tex-math> </jats:alternatives> </jats:disp-formula> having prescribed mass <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_inline1.png\" /> <jats:tex-math>$\\int_{\\mathbb{R}^{N}}|u|^2 =a^2,$</jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:italic>a</jats:italic> &gt; 0 is a constant, <jats:italic>λ</jats:italic> appears as a Lagrange multiplier. We focus on the pure <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-supercritical case and combination case of <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-subcritical and <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-supercritical nonlinearities <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_eqnU2.png\" /> <jats:tex-math>\\begin{equation*}f(u)=\\tau |u|^{q-2}u+|u|^{p-2}u,\\quad \\tau \\gt 0,\\qquad{\\rm where}\\ \\ 2 \\lt q \\lt 2+\\frac{4}{N} \\ {\\rm and} \\quad \\ p \\gt \\bar{p},\\end{equation*}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400004X_inline2.png\" /> <jats:tex-math>$\\bar{p}:=4+\\frac{4}{N}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:italic>L</jats:italic><jats:sup>2</jats:sup>-critical exponent. Our work extends and develops some recent results in the literature.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"70 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001309152400004x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the radially symmetric positive solutions to quasilinear problem \begin{equation*}-\triangle u-u\triangle u^{2}+\lambda u=f(u),\quad{\rm in} \ \mathbb{R}^{N},\end{equation*} having prescribed mass $\int_{\mathbb{R}^{N}}|u|^2 =a^2,$ where a > 0 is a constant, λ appears as a Lagrange multiplier. We focus on the pure L2-supercritical case and combination case of L2-subcritical and L2-supercritical nonlinearities \begin{equation*}f(u)=\tau |u|^{q-2}u+|u|^{p-2}u,\quad \tau \gt 0,\qquad{\rm where}\ \ 2 \lt q \lt 2+\frac{4}{N} \ {\rm and} \quad \ p \gt \bar{p},\end{equation*} where $\bar{p}:=4+\frac{4}{N}$ is the L2-critical exponent. Our work extends and develops some recent results in the literature.
具有组合非线性的准线性薛定谔方程的归一化解
我们考虑准线性问题的径向对称正解。\mathbb{R}^{N},end{equation*} 具有规定质量 $\int_{\mathbb{R}^{N}}|u|^2 =a^2,$ 其中 a > 0 是常数,λ 作为拉格朗日乘数出现。我们重点讨论纯 L2 超临界情况以及 L2 超临界和 L2 超临界非线性的组合情况 (begin{equation*}f(u)=\tau |u|^{q-2}u+|u|^{p-2}u,\quad \tau \gt 0,\qquad{rm where} \ 2 \lt q \lt 2+\frac{4}{N}\ 和\quad \ p \gt \bar{p},\end{equation*} 其中 $\bar{p}:=4+\frac{4}{N}$ 是 L2 临界指数。我们的工作扩展并发展了文献中的一些最新成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信