Ayaka Abe, Prof. Dr. Daisuke Mori, Zhichao Wang, Prof. Dr. Sou Taminato, Prof. Dr. Yasuo Takeda, Prof. Dr. Osamu Yamamoto, Prof. Dr. Nobuyuki Imanishi
{"title":"Flexible High Lithium-Ion Conducting PEO-Based Solid Polymer Electrolyte with Liquid Plasticizers for High Performance Solid-State Lithium Batteries","authors":"Ayaka Abe, Prof. Dr. Daisuke Mori, Zhichao Wang, Prof. Dr. Sou Taminato, Prof. Dr. Yasuo Takeda, Prof. Dr. Osamu Yamamoto, Prof. Dr. Nobuyuki Imanishi","doi":"10.1002/open.202400041","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion secondary batteries (LIB) with high energy density have attracted much attention for electric vehicle (EV) applications. However, LIBs have a safety problem because these batteries contain a flammable organic electrolyte. As such, all-solid secondary batteries that are not flammable have been extensively reported recently. In this study, we have focused on polymer electrolytes, which is flexible and is expected to address the safety problem. However, the conventional polymer electrolytes have low electrial conductivity at room temperature. Various attempts have been made to solve this problem, such as the addition of inorganic fillers and ionic liquids; however, these composite polymer electrolytes have not yet reached a practical level of lithium-ion conductivity. In this study, high electrical conductivity and lithium dendrite formation-free PEO based composite electrolytes are developed with both a filler of Li<sub>6,4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> and liquid plasticizers of tetraethylene glycol dimethyl ether and 1,2 dimethoxyethane. The proposed flexible polymer electrolyte shows a high electrical conduciviy of 6.01×10<sup>−4</sup> S cm<sup>−1</sup> at 25 °C.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202400041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/open.202400041","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion secondary batteries (LIB) with high energy density have attracted much attention for electric vehicle (EV) applications. However, LIBs have a safety problem because these batteries contain a flammable organic electrolyte. As such, all-solid secondary batteries that are not flammable have been extensively reported recently. In this study, we have focused on polymer electrolytes, which is flexible and is expected to address the safety problem. However, the conventional polymer electrolytes have low electrial conductivity at room temperature. Various attempts have been made to solve this problem, such as the addition of inorganic fillers and ionic liquids; however, these composite polymer electrolytes have not yet reached a practical level of lithium-ion conductivity. In this study, high electrical conductivity and lithium dendrite formation-free PEO based composite electrolytes are developed with both a filler of Li6,4La3Zr1.4Ta0.6O12 and liquid plasticizers of tetraethylene glycol dimethyl ether and 1,2 dimethoxyethane. The proposed flexible polymer electrolyte shows a high electrical conduciviy of 6.01×10−4 S cm−1 at 25 °C.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.