{"title":"Research and Implementation of an Embedded Traffic Sign Detection Model Using Improved YOLOV5","authors":"Tong Hu, Zhengwei Gong, Jun Song","doi":"10.1007/s12239-024-00082-y","DOIUrl":null,"url":null,"abstract":"<p>This study proposes an embedded traffic sign detection system, YOLOV5-MCBS, based on an enhanced YOLOv5 algorithm. This system aims to mitigate the impact of traditional target detection algorithms’ high computational complexity and low detection accuracy on traffic sign detection performance, thereby improving accuracy and real-time performance. Our primary objective is to develop a lightweight network that enhances detection accuracy, enabling real-time detection on embedded systems. First, to minimize computation and model size, we replaced the original YOLOv5 algorithm’s backbone feature network with a lightweight MobileNetV3 network. Subsequently, we introduced the convolutional block attention module into the neck network to optimize the feature fusion stage’s attention and enhance model detection accuracy. Concurrently, we employed the bidirectional feature pyramid network in the neck layer for multi-scale feature fusion. Additionally, we incorporated a small target detection layer into the original network output layer to enhance detection performance. What’s more, we transplanted the enhanced algorithm into a Raspberry Pi embedded system to validate its real-time detection performance. Finally, we conducted computer simulations to assess our algorithm’s performance by comparing it with existing target detection algorithms. Experimental results suggest that the enhanced algorithm achieves an average precision mean (mAP @ 0.5) value of 95.3% and frames per second value of 91.1 on the embedded system.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"68 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00082-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes an embedded traffic sign detection system, YOLOV5-MCBS, based on an enhanced YOLOv5 algorithm. This system aims to mitigate the impact of traditional target detection algorithms’ high computational complexity and low detection accuracy on traffic sign detection performance, thereby improving accuracy and real-time performance. Our primary objective is to develop a lightweight network that enhances detection accuracy, enabling real-time detection on embedded systems. First, to minimize computation and model size, we replaced the original YOLOv5 algorithm’s backbone feature network with a lightweight MobileNetV3 network. Subsequently, we introduced the convolutional block attention module into the neck network to optimize the feature fusion stage’s attention and enhance model detection accuracy. Concurrently, we employed the bidirectional feature pyramid network in the neck layer for multi-scale feature fusion. Additionally, we incorporated a small target detection layer into the original network output layer to enhance detection performance. What’s more, we transplanted the enhanced algorithm into a Raspberry Pi embedded system to validate its real-time detection performance. Finally, we conducted computer simulations to assess our algorithm’s performance by comparing it with existing target detection algorithms. Experimental results suggest that the enhanced algorithm achieves an average precision mean (mAP @ 0.5) value of 95.3% and frames per second value of 91.1 on the embedded system.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.