Attitude Tracking Control of All-Terrain Vehicle with Tandem Active–Passive Suspension

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Liang Wu, Weizhou Zhang, Liwei Ni, Weiwei Jia, Iljoong Youn
{"title":"Attitude Tracking Control of All-Terrain Vehicle with Tandem Active–Passive Suspension","authors":"Liang Wu, Weizhou Zhang, Liwei Ni, Weiwei Jia, Iljoong Youn","doi":"10.1007/s12239-024-00085-9","DOIUrl":null,"url":null,"abstract":"<p>When vehicles with traditional passive suspension systems are driving on complex pavement, the large vibration of the body will result in relatively negative effects on ride comfort, vehicle handling, and stability of passengers and goods. Body attitude tracking control based on tandem active–passive suspension can improve vehicle attitude stability and passability by enabling the body attitude to track an ideal position. In addition, the performance limitations of the actuator are considered in the design of the attitude tracking control algorithms. The attitude tracking performances are investigated in both simulations and real car tests. Two control algorithms which adopt linear quadratic regulator (LQR) and model predictive control (MPC) algorithms, are compared and analyzed in terms of theory and control performance. The simulations and real car tests results show that both attitude tracking control algorithms can effectively track the ideal body attitude with acceptable errors under different pavements, and the control effect of MPC is slightly better than that of LQR. In this way, attitude tracking of car body shows a lot of potential when a vehicle is in harsh environments.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"86 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00085-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

When vehicles with traditional passive suspension systems are driving on complex pavement, the large vibration of the body will result in relatively negative effects on ride comfort, vehicle handling, and stability of passengers and goods. Body attitude tracking control based on tandem active–passive suspension can improve vehicle attitude stability and passability by enabling the body attitude to track an ideal position. In addition, the performance limitations of the actuator are considered in the design of the attitude tracking control algorithms. The attitude tracking performances are investigated in both simulations and real car tests. Two control algorithms which adopt linear quadratic regulator (LQR) and model predictive control (MPC) algorithms, are compared and analyzed in terms of theory and control performance. The simulations and real car tests results show that both attitude tracking control algorithms can effectively track the ideal body attitude with acceptable errors under different pavements, and the control effect of MPC is slightly better than that of LQR. In this way, attitude tracking of car body shows a lot of potential when a vehicle is in harsh environments.

Abstract Image

带串联式主被动悬架的全地形车姿态跟踪控制
采用传统被动悬架系统的车辆在复杂路面上行驶时,车身的大幅振动会对乘坐舒适性、车辆操控性以及乘客和货物的稳定性造成相对负面的影响。基于串联式主被动悬架的车身姿态跟踪控制可使车身姿态跟踪到理想位置,从而提高车辆姿态的稳定性和通过性。此外,在设计车身姿态跟踪控制算法时还考虑了执行器的性能限制。在模拟和实车测试中对姿态跟踪性能进行了研究。在理论和控制性能方面,对采用线性二次调节器(LQR)和模型预测控制(MPC)算法的两种控制算法进行了比较和分析。仿真和实车测试结果表明,两种姿态跟踪控制算法都能在不同路面条件下以可接受的误差有效跟踪理想车身姿态,其中 MPC 的控制效果略优于 LQR。因此,当车辆处于恶劣环境时,车身姿态跟踪显示出很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Automotive Technology
International Journal of Automotive Technology 工程技术-工程:机械
CiteScore
3.10
自引率
12.50%
发文量
129
审稿时长
6 months
期刊介绍: The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies. The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published. When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors. No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信