On unramified Galois 2-groups over \(\mathbb{Z}_2\)-extensions of some imaginary biquadratic number fields

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Mouhib, S. Rouas
{"title":"On unramified Galois 2-groups over \\(\\mathbb{Z}_2\\)-extensions of some imaginary biquadratic number fields","authors":"A. Mouhib,&nbsp;S. Rouas","doi":"10.1007/s10474-024-01425-y","DOIUrl":null,"url":null,"abstract":"<div><p>For an imaginary biquadratic number field <span>\\(K = \\mathbb Q(\\sqrt{-q},\\sqrt d)\\)</span>, where <span>\\(q&gt;3\\)</span> is a prime congruent to <span>\\(3 \\pmod 8\\)</span>, and <span>\\(d\\)</span> is an odd square-free integer which is not equal to <i>q</i>, let <span>\\(K_\\infty\\)</span> be the cyclotomic <span>\\(\\mathbb Z_2\\)</span>-extension of <span>\\(K\\)</span>. For any integer <span>\\(n \\geq 0\\)</span>, we denote by <span>\\(K_n\\)</span> the <i>n</i>th layer of <span>\\(K_\\infty/K\\)</span>. We investigate the rank of the 2-class group of <span>\\(K_n\\)</span>, then we draw the list of all number fields <i>K</i> such that the Galois group of the maximal unramified pro-2-extension over their cyclotomic <span>\\(\\mathbb Z_2\\)</span>-extension is metacyclic pro-2 group.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 2","pages":"481 - 491"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01425-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an imaginary biquadratic number field \(K = \mathbb Q(\sqrt{-q},\sqrt d)\), where \(q>3\) is a prime congruent to \(3 \pmod 8\), and \(d\) is an odd square-free integer which is not equal to q, let \(K_\infty\) be the cyclotomic \(\mathbb Z_2\)-extension of \(K\). For any integer \(n \geq 0\), we denote by \(K_n\) the nth layer of \(K_\infty/K\). We investigate the rank of the 2-class group of \(K_n\), then we draw the list of all number fields K such that the Galois group of the maximal unramified pro-2-extension over their cyclotomic \(\mathbb Z_2\)-extension is metacyclic pro-2 group.

关于一些虚二次数域的$$\mathbb{Z}_2$$上的未成帧伽罗瓦2群的扩展
对于一个虚二次数域(K = \mathbb Q(\sqrt{-q},\sqrt d)),其中(q>;3)是一个与(3)全等的素数,并且(d)是一个不等于q的奇数无平方整数,让(K_infty)成为(K)的循环(mathbb Z_2)扩展。对于任意整数\(n \geq 0\), 我们用\(K_n\)表示\(K_infty/K\)的第n层。我们研究了 \(K_n\) 的 2 类群的秩,然后得出了所有数域 K 的列表,这些数域 K 的最大未ramified pro-2-xtension 在它们的循环 \(\mathbb Z_2\)-extension 上的伽罗瓦群是元循环 pro-2 群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信