{"title":"Analysis of Power Consumption on BOP System in a Fuel Cell Electric Bus According to the Fuel Cell Load Range","authors":"Yebeen Kim, Jiwoong Kim, Kyoungdoug Min","doi":"10.1007/s12239-024-00064-0","DOIUrl":null,"url":null,"abstract":"<p>The proton exchange membrane fuel cell (PEMFC) in a fuel cell electric bus (FCEB) converts hydrogen's chemical energy into electrical energy. The fuel cell system comprises a fuel cell stack and a balance of plant (BOP) system, which efficiently controls the stack. Fuel cell and battery are sensitive to operational temperature, which directly impacts performance, lifespan, and safety. Therefore, a thermal management system (TMS) is necessary to maintain an appropriate temperature by dissipating the heat generated by the fuel cell and battery. In this study, the exponential or quadratic relationships between the power consumption of the major components of an FCEB and various factors, such as temperature and flow rate influencing the operational behavior and control of the components, were analyzed based on the results of a dynamometer vehicle test. Additionally, the vehicle's energy flow was calculated under different fuel cell load conditions. When the fuel cell operated at 56.3 kW, TMS power was 6.6 times higher than at 20 kW. At full load, under 90 kW, it increased to 17.4 times higher. The rise in fuel cell load correlated with higher heat generation, resulting in a significant increase in power consumption for both the radiator fan and coolant pump.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"298 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00064-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The proton exchange membrane fuel cell (PEMFC) in a fuel cell electric bus (FCEB) converts hydrogen's chemical energy into electrical energy. The fuel cell system comprises a fuel cell stack and a balance of plant (BOP) system, which efficiently controls the stack. Fuel cell and battery are sensitive to operational temperature, which directly impacts performance, lifespan, and safety. Therefore, a thermal management system (TMS) is necessary to maintain an appropriate temperature by dissipating the heat generated by the fuel cell and battery. In this study, the exponential or quadratic relationships between the power consumption of the major components of an FCEB and various factors, such as temperature and flow rate influencing the operational behavior and control of the components, were analyzed based on the results of a dynamometer vehicle test. Additionally, the vehicle's energy flow was calculated under different fuel cell load conditions. When the fuel cell operated at 56.3 kW, TMS power was 6.6 times higher than at 20 kW. At full load, under 90 kW, it increased to 17.4 times higher. The rise in fuel cell load correlated with higher heat generation, resulting in a significant increase in power consumption for both the radiator fan and coolant pump.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.