Adaptive Model Predictive Control for Intelligent Vehicle Trajectory Tracking Considering Road Curvature

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yin Gao, Xudong Wang, Jianlong Huang, Lingcong Yuan
{"title":"Adaptive Model Predictive Control for Intelligent Vehicle Trajectory Tracking Considering Road Curvature","authors":"Yin Gao, Xudong Wang, Jianlong Huang, Lingcong Yuan","doi":"10.1007/s12239-024-00086-8","DOIUrl":null,"url":null,"abstract":"<p>A parametric Adaptive Model Predictive Controller (AMPC) based on Particle Swarm Optimization-Back Propagation (PSO-BP) neural network has been developed in this paper, the primary focus is on improving the trajectory tracking performance of autonomous vehicles under varying road conditions. The PSO-BP neural network is employed for real-time adjustment of the controller's predictive horizon and sampling time. A vehicle dynamics model is established and an improved tracking control algorithm involving road curvature feedforward is proposed. In the design of AMPC, the real-time update of tire lateral stiffness is achieved through the adoption of the Recursive Least Squares (RLS) method, ensuring the precision of trajectory tracking for the vehicle under varying operating conditions. The simulation platform, which combines Carsim and Simulink, was employed for validating the proposed approach. The findings reveal that the proposed controller can promptly adjust the predictive horizon and sampling time according to the vehicle's state. Through the employed estimation strategy, real-time adjustments of tire lateral stiffness are achieved, allowing for dynamic alterations of vehicle speed and front wheel angle in response to road curvature. As a result, this approach significantly enhances control accuracy and lateral steering stability, especially in large curvature conditions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00086-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A parametric Adaptive Model Predictive Controller (AMPC) based on Particle Swarm Optimization-Back Propagation (PSO-BP) neural network has been developed in this paper, the primary focus is on improving the trajectory tracking performance of autonomous vehicles under varying road conditions. The PSO-BP neural network is employed for real-time adjustment of the controller's predictive horizon and sampling time. A vehicle dynamics model is established and an improved tracking control algorithm involving road curvature feedforward is proposed. In the design of AMPC, the real-time update of tire lateral stiffness is achieved through the adoption of the Recursive Least Squares (RLS) method, ensuring the precision of trajectory tracking for the vehicle under varying operating conditions. The simulation platform, which combines Carsim and Simulink, was employed for validating the proposed approach. The findings reveal that the proposed controller can promptly adjust the predictive horizon and sampling time according to the vehicle's state. Through the employed estimation strategy, real-time adjustments of tire lateral stiffness are achieved, allowing for dynamic alterations of vehicle speed and front wheel angle in response to road curvature. As a result, this approach significantly enhances control accuracy and lateral steering stability, especially in large curvature conditions.

Abstract Image

考虑道路曲率的智能车辆轨迹跟踪自适应模型预测控制
本文开发了一种基于粒子群优化-反向传播(PSO-BP)神经网络的参数化自适应模型预测控制器(AMPC),主要用于改善自动驾驶汽车在不同道路条件下的轨迹跟踪性能。PSO-BP 神经网络用于实时调整控制器的预测范围和采样时间。建立了车辆动力学模型,并提出了涉及道路曲率前馈的改进跟踪控制算法。在 AMPC 的设计中,通过采用递归最小二乘法(RLS)实现了轮胎侧向刚度的实时更新,确保了车辆在不同运行条件下的轨迹跟踪精度。仿真平台结合了 Carsim 和 Simulink,用于验证所提出的方法。研究结果表明,所提出的控制器可以根据车辆的状态及时调整预测范围和采样时间。通过所采用的估计策略,实现了对轮胎侧向刚度的实时调整,使车速和前轮角度能够根据路面曲率发生动态变化。因此,这种方法大大提高了控制精度和横向转向稳定性,尤其是在大曲率条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信